Allozyme variation among european beech (Fagus sylvatica L.) stands in Bosnia and Herzegovina

2016 ◽  
Vol 27 (3-4) ◽  
pp. 5-15
Author(s):  
S. Kvesić ◽  
D. Ballian ◽  
T. V. Parpan

From the economical and ecological point of view, beech (Fagus sylvatica L.) is one of the most important forest tree species in Bosnia and Herzegovina. To understand the significance of beech forests, something about the structure of forests and forest lands needs to be said. Bosnia and Herzegovina has 3.231.500 hectares of forests and forest land, which is about 60% of its surface. In the forest and forest lands structure, we can see that it has high forest occupying 51.1% of the forest area, coppice occupying 38.70%, shrubs occupying 4%, bare land and clearings occupying 5.80% and other unproductive areas occupying 0.40%. Beech can be found in mixed stands of beech and fir, as well as stands of beech, fir and spruce that occupy 46% of all high forests. Thus, the total area of ​​forests where the beech is found is approximately 1.652.400 hectares. The aim of the study was to carry out the analysis of genetic structures of natural beech populations in Bosnia and Herzegovina by using isoenzyme markers. Conducting a biochemical genetic structure analysis of 14 beech populations, using 10 enzyme systems with 16 isoenzyme gene loci, we found significant differences. Variability in some gene loci is large, while some populations for some gene loci showed monomorphism. The results indicate that in order to maintain natural genetic resources of common beech in Bosnia and Herzegovina, there should be a dense network of gene reserves established. This network from one of the Balkan countries should then become a constituent part of all-European network. These gene banks need in situ and ex situ methods (seed banks, seed stands, and seed orchards) to maintain the genetic diversity of populations. Based on the research results, every ecological niche of common beech i.e. their genetic variation should be conserved regarding the appropriate number of populations and individuals to preserve the ecological and physiological features of this valuable commercial species. 

Genetika ◽  
2013 ◽  
Vol 45 (3) ◽  
pp. 895-906
Author(s):  
Dalibor Ballian ◽  
Vasilije Isajev ◽  
Vanja Danicic ◽  
Branislav Cvjetkovic ◽  
Faruk Bogunic ◽  
...  

Beech (Fagus sylvatica L.) is one of the most important forest trees in Bosnia and Herzegovina in both economic and environmental terms. The total area of forest in which beech is present is approx. 1,652,400 ha. There is a proportionate need to plant new forests and produce genetically high quality seed and saplings. Biochemical analysis of the genetic structure of eight populations of beech using ten enzyme systems from 16 isoenzyme gene loci revealed significant differences between the populations analyzed. Variance levels were high in some gene loci, while in some populations monomorphism was recorded only for individual gene loci. The average number of alleles per locus ranged from 2.1875 to 2.5625, and the average number of genotypes per locus varied from 2.6875 to 3.2500. The multilocus genetic diversity at the population level ranged from 63.276 to 162.001, and the genofund diversity varied from 1.2708 to 1.3416.The average differentiation value obtained for all populations was fairly low (Dj=5.81), indicating a percentage of overall variance of about 94.194%.


2012 ◽  
Vol 49 (No. 11) ◽  
pp. 491-501 ◽  
Author(s):  
H. Pretzsch

This study indicates that the growth of mixed stands with Norway spruce (Picea abies [L.] Karst.) and common beech (Fagus sylvatica L.) is more stable across a range of stand densities than it is in pure forests of the same species. Typical density-growth-relationships are derived from 42 long-term experimental areas with 134 plots in total, the oldest of them under survey since 1870. From these results it is apparent that in pure stands maximum growth can be obtained only at medium stand density, whereas in mixed stands growth is almost unchanged over a range of low, medium and high stand density. The finding that mixed stands may perform a superior growth to pure stands with either decreasing or increasing stand density has often been overlooked but is nevertheless of major practical importance.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


Author(s):  
Kirsten Höwler ◽  
Torsten Vor ◽  
Peter Schall ◽  
Peter Annighöfer ◽  
Dominik Seidel ◽  
...  

AbstractResearch on mixed forests has mostly focused on tree growth and productivity, or resistance and resilience in changing climate conditions, but only rarely on the effects of tree species mixing on timber quality. In particular, it is still unclear whether the numerous positive effects of mixed forests on productivity and stability come at the expense of timber quality. In this study, we used photographs of sawn boards from 90 European beech (Fagus sylvatica L.) trees of mixed and pure forest stands to analyze internal timber quality through the quality indicator knot surface that was quantitatively assessed using the software Datinf® Measure. We observed a decrease in knot surface with increasing distance from the pith as well as smaller values in the lower log sections. Regarding the influence of neighborhood species identity, we found only minor effects meaning that timber qualities in mixed stands of beech and Norway spruce (Picea abies (L.) H. Karst.) tended to be slightly worse compared to pure beech stands.


Sign in / Sign up

Export Citation Format

Share Document