scholarly journals Социальная приемлемость экологического риска населением в регионах деятельности атомных электростанций

2018 ◽  
Vol 8 (1) ◽  
pp. 409-419
Author(s):  
S. G. Maksimova ◽  
M. M. Akulich ◽  
V. V. Pit ◽  
O. E. Noyanzina ◽  
D. A. Omelchenko

<p>The use of nuclear technology increases the ecological risk for the society and people’s moods, inevitably. The article presents results of monitoring, realized in 2013–2015 in nine subjects of the Russian Federation – territories of disposition of the Concern RosEnergoAtom branches – the Voronezhskaya oblast, the Kurskaya oblast, the Leningrad oblast, the Saratovskaya oblast, the Sverdlovskaya oblast, the Murmanskaya oblast, the Rostovskaya oblast, the Tverskaya oblast, and the Smolenskaya oblast. Authors considered social moods of population in regions of location of nuclear power plants, people’s trust to the nuclear industry, opinions about its reliability and safety, and perspectives for the further development. The article contains the results of comparative analysis of integral indexes, characterizing social admissibility of nuclear industry and evaluation of social role of the nuclear power plants in regional economic development. We suggested, that indexes of general and ecological security of the nuclear power plant, revealing the estimations of reliability, stability, general and ecological security, implication of new technologies of protection, implementation of new technologies of environment protection, realized by administrative bodies of the nuclear power plants could could vary in different regions. We proved, that the social admissibility of the risk in regions of nuclear power plants location is a necessary condition for the development of the nuclear industry, elimination of social tension, and formation of positive social moods in regions and cities of location of nuclear power plants.</p>

Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


Author(s):  
William D. Rezak

One of America’s best kept secrets is the success of its nuclear electric power industry. This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result—the US nuclear industry is alive and well. Perhaps it’s time to start anew the building of nuclear power plants. Let’s take the wraps off the major successes achieved in the nuclear power industry. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in 34 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crisis in California. Traditionally, the evaluation of electric power generation facility performance has focused on the ability of plants to produce at design capacity for high percentages of the time. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year’s operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation is minimal. It’s time, once more, to turn to the safe, reliable, environmentally friendly nuclear power alternative.


1976 ◽  
Vol 102 (2) ◽  
pp. 229-232
Author(s):  
Joel L. Caves ◽  
Heber T. Newton

Author(s):  
S. Herstead ◽  
M. de Vos ◽  
S. Cook

The success of any new build project is reliant upon all stakeholders — applicants, vendors, contractors and regulatory agencies — being ready to do their part. Over the past several years, the Canadian Nuclear Safety Commission (CNSC) has been working to ensure that it has the appropriate regulatory framework and internal processes in place for the timely and efficient licensing of all types of reactor, regardless of size. This effort has resulted in several new regulatory documents and internal processes including pre-project vendor design reviews. The CNSC’s general nuclear safety objective requires that nuclear facilities be designed and operated in a manner that will protect the health, safety and security of persons and the environment from unreasonable risk, and to implement Canada’s international commitments on the peaceful use of nuclear energy. To achieve this objective, the regulatory approach strikes a balance between pure performance-based regulation and prescriptive-based regulation. By utilizing this approach, CNSC seeks to ensure a regulatory environment exists that encourages innovation within the nuclear industry without compromising the high standards necessary for safety. The CNSC is applying a technology neutral approach as part of its continuing work to update its regulatory framework and achieve clarity of its requirements. A reactor power threshold of approximately 200 MW(th) has been chosen to distinguish between large and small reactors. It is recognized that some Small Modular Reactors (SMRs) will be larger than 200 MW(th), so a graded approach to achieving safety is still possible even though Nuclear Power Plant design and safety requirements will apply. Design requirements for large reactors are established through two main regulatory documents. These are RD-337 Design for New Nuclear Power Plants, and RD-310 Safety Analysis for Nuclear Power Plants. For reactors below 200 MW(th), the CNSC allows additional flexibility in the use of a graded approach to achieving safety in two new regulatory documents: RD-367 Design of Small Reactors and RD-308 Deterministic Safety Analysis for Small Reactors. The CNSC offers a pre-licensing vendor design review as an optional service for reactor facility designs. This review process is intended to provide early identification and resolution of potential regulatory or technical issues in the design process, particularly those that could result in significant changes to the design or analysis. The process aims to increase regulatory certainty and ultimately contribute to public safety. This paper outlines the CNSC’s expectations for applicant and vendor readiness and discusses the process for pre-licensing reviews which allows vendors and applicants to understand their readiness for licensing.


Author(s):  
Claude Faidy

On December 2005, the French regulator issued a new regulation for French nuclear power plants, in particular for pressure equipment (PE). This regulation need first to agree with non-nuclear PE regulation and add to that some specific requirements, in particular radiation protection requirements. Different advantages are in these proposal, it’s more qualitative risk oriented and it’s an important link with non-nuclear industry. Only few components are nuclear specific. But, the general philosophy of the existing Codes (RCC-M, KTA or ASME) have to be improved. For foreign Codes, it’s plan to define the differences in the user specifications. In parallel to that, a new safety classification has been developed by French utility. The consequences is the need to cross all these specifications to define a minimum quality level for each components or systems. In the same time a new concept has been developed to replace the well known “Leak Before Break methodology” by the “Break Exclusion” methodology. This paper will summarize the key aspects of these different topics and regularly compare with ASME practices.


Author(s):  
Xinyu Wei ◽  
Hongbin Ma ◽  
Xiaowei Xiong ◽  
Duanjie Yang ◽  
Zhaorong Shang

In China, the radioactive environmental impact assessment (EIA) for nuclear power plants (NPPs) had been carried out in detail due to the specific characteristic of radiation and the social universal attention. However, the nonradioactive environment impact assessment for NPP doesn’t get enough attention. This should be improved, since the operation of NPPs could cause some serious nonradioactive environment impacts. Based on the investigation of EIA for American NPPs, the following suggestions were put forward for Chinese EIA: (1) the laws and regulations in China need to be revised for the EIA of NPPs; (2) the statistics of chemicals or biocides used in the operation of NPPs and their discharged concentration need to be tested; (3) the impact assessments of nonradioactive gas emissions as well as hazardous wastes need to be carried out to meet the national requirements; and (4) the monitoring of nonradioactive waste also needs to be carried out for NPPs to obtain the basic data.


Sign in / Sign up

Export Citation Format

Share Document