scholarly journals Efficient Support Vector Regression with Reduced Training Data

Author(s):  
Ling Cen ◽  
Quang Hieu Vu ◽  
Dymitr Ruta

2016 ◽  
Vol 136 (12) ◽  
pp. 898-907 ◽  
Author(s):  
Joao Gari da Silva Fonseca Junior ◽  
Hideaki Ohtake ◽  
Takashi Oozeki ◽  
Kazuhiko Ogimoto


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Kai Huang ◽  
Ming-Yi You ◽  
Yun-Xia Ye ◽  
Bin Jiang ◽  
An-Nan Lu

The interferometer is a widely used direction-finding system with high precision. When there are comprehensive disturbances in the direction-finding system, some scholars have proposed corresponding correction algorithms, but most of them require hypothesis based on the geometric position of the array. The method of using machine learning that has attracted much attention recently is data driven, which can be independent of these assumptions. We propose a direction-finding method for the interferometer by using multioutput least squares support vector regression (MLSSVR) model. The application of this method includes the following: the construction of MLSSVR model training data, training and construction of the MLSSVR model, and the estimation of direction of arrival. Finally, the method is verified through numerical simulation. When there are comprehensive deviations in the system, the direction-finding accuracy can be effectively improved.



2013 ◽  
Vol 137 ◽  
pp. 184-197 ◽  
Author(s):  
Akpona Okujeni ◽  
Sebastian van der Linden ◽  
Laurent Tits ◽  
Ben Somers ◽  
Patrick Hostert


2021 ◽  
Vol 1 (1) ◽  
pp. 52-65
Author(s):  
Drajat Indra Purnama

ABSTRAKInvestasi emas merupakan salah satu investasi yang menjadi favorit dimasa pandemi Covid 19 seperti sekarang ini. Hal ini dikarenakan harga emas yang nilainya relatif fluktuatif tetapi menunjukkan tren peningkatan. Investor dituntut pandai dalam berinvestasi emas, mampu memprediksi peluang dimasa yang akan datang. Salah satu model peramalan data deret waktu adalah model Autoregressive Integrated Moving Average (ARIMA). Model ARIMA baik digunakan pada data yang berpola linear tetapi jika digunakan pada data data nonlinear keakuratannya menurun. Untuk mengatasi permasalahan data nonlinear dapat menggunakan model Support Vector Regression (SVR). Pengujian linearitas pada data harga emas menunjukkan adanya pola data linear dan nonlinear sekaligus sehingga digunakan kombinasi ARIMA dan SVR yaitu model hybrid ARIMA-SVR. Hasil peramalan menggunakan model hybrid ARIMA-SVR menunjukkan hasil lebih baik dibanding model ARIMA. Hal ini dibuktikan dengan nilai MAPE model hybrid ARIMA-SVR lebih kecil dibandingkan nilai MAPE model ARIMA. Nilai MAPE model hybrid ARIMA-SVR sebesar 0,355 pada data training dan 4,001 pada data testing, sedangkan nilai MAPE model ARIMA sebesar 0,903 pada data training dan 4,076 pada data testing.ABSTRACTGold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data.



2019 ◽  
Vol 3 (2) ◽  
pp. 282-287
Author(s):  
Ika Oktavianti ◽  
Ermatita Ermatita ◽  
Dian Palupi Rini

Licensing services is one of the forms of public services that important in supporting increased investment in Indonesia and is currently carried out by the Investment and Licensing Services Department. The problems that occur in general are the length of time to process licenses and one of the contributing factors is the limited number of licensing officers. Licensing data is a time series data which have monthly observation. The Artificial Neural Network (ANN) and Support Vector Machine (SVR) is used as machine learning techniques to predict licensing pattern based on time series data. Of the data used dataset 1 and dataset 2, the sharing of training data and testing data is equal to 70% and 30% with consideration that training data must be more than testing data. The result of the study showed for Dataset 1, the ANN-Multilayer Perceptron have a better performance than Support Vector Regression (SVR) with MSE, MAE and RMSE values is 251.09, 11.45, and 15.84. Then for dataset 2, SVR-Linear has better performance than MLP with values of MSE, MAE and RMSE of 1839.93, 32.80, and 42.89. The dataset used to predict the number of permissions is dataset 2. The study also used the Simple Linear Regression (SLR) method to see the causal relationship between the number of licenses issued and licensing service officers. The result is that the relationship between the number of licenses issued and the number of service officers is less significant because there are other factors that affect the number of licenses.  



2021 ◽  
Author(s):  
Drajat Indra Purnama

Gold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data.



Author(s):  
Botao Jiang ◽  
Fuyu Zhao

Critical heat flux (CHF) is one of the most crucial design criteria in other boiling systems such as evaporator, steam generators, fuel cooling system, boiler, etc. This paper presents an alternative CHF prediction method named projection support vector regression (PSVR), which is a combination of feature vector selection (FVS) method and support vector regression (SVR). In PSVR, the FVS method is first used to select a relevant subset (feature vectors, FVs) from the training data, and then both the training data and the test data are projected into the subspace constructed by FVs, and finally SVR is applied to estimate the projected data. An available CHF dataset taken from the literature is used in this paper. The CHF data are split into two subsets, the training set and the test set. The training set is used to train the PSVR model and the test set is then used to evaluate the trained model. The predicted results of PSVR are compared with those of artificial neural networks (ANNs). The parametric trends of CHF are also investigated using the PSVR model. It is found that the results of the proposed method not only fit the general understanding, but also agree well with the experimental data. Thus, PSVR can be used successfully for prediction of CHF in contrast to ANNs.



Jurnal Varian ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 43-50
Author(s):  
Ni Putu Nanik Hendayanti ◽  
I Ketut Putu Suniantara ◽  
Maulida Nurhidayati

Bali is one of the most popular tourism sectors in Indonesia. In the arena of international tourism, the island of Bali is considered as the most famous national destination compared to other destinations. The high level of domestic tourism visits to Bali annually must be strictly noted especially for local governments and Bali provincial tourism agencies in optimizing facilities, infrastructure to the safety of tourists Visit. Therefore, it takes a method that can predict the number of tourists visiting Bali annually. One method used to predict the number of tourists visiting Bali is Support Vector Regression (SVR). SVR is a method to estimate a mapped function from an input object to a real amount based on the training data. SVR has the same properties about maximizing margins and kernel tricks for mapping nonlinear data. Results of this research. Based on forecasting using MAPE value training data obtained by 11.34% while use data testing of MAPE value obtained by 7.30%. Based on the resulting MAPE value can be categorized well for the number of tourism visitors.



2021 ◽  
Vol 3 (1) ◽  
pp. 52-65
Author(s):  
Drajat Indra Purnama

ABSTRAKInvestasi emas merupakan salah satu investasi yang menjadi favorit dimasa pandemi Covid 19 seperti sekarang ini. Hal ini dikarenakan harga emas yang nilainya relatif fluktuatif tetapi menunjukkan tren peningkatan. Investor dituntut pandai dalam berinvestasi emas, mampu memprediksi peluang dimasa yang akan datang. Salah satu model peramalan data deret waktu adalah model Autoregressive Integrated Moving Average (ARIMA). Model ARIMA baik digunakan pada data yang berpola linear tetapi jika digunakan pada data data nonlinear keakuratannya menurun. Untuk mengatasi permasalahan data nonlinear dapat menggunakan model Support Vector Regression (SVR). Pengujian linearitas pada data harga emas menunjukkan adanya pola data linear dan nonlinear sekaligus sehingga digunakan kombinasi ARIMA dan SVR yaitu model hybrid ARIMA-SVR. Hasil peramalan menggunakan model hybrid ARIMA-SVR menunjukkan hasil lebih baik dibanding model ARIMA. Hal ini dibuktikan dengan nilai MAPE model hybrid ARIMA-SVR lebih kecil dibandingkan nilai MAPE model ARIMA. Nilai MAPE model hybrid ARIMA-SVR sebesar 0,355 pada data training dan 4,001 pada data testing, sedangkan nilai MAPE model ARIMA sebesar 0,903 pada data training dan 4,076 pada data testing.ABSTRACTGold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data.



2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Litao Ma ◽  
Jiqiang Chen

In order to extract the priori information (PI) provided by real monitored values of peak particle velocity (PPV) and increase the prediction accuracy of PPV, PI based support vector regression (SVR) is established. Firstly, to extract the PI provided by monitored data from the aspect of mathematics, the probability density of PPV is estimated withε-SVR. Secondly, in order to make full use of the PI about fluctuation of PPV between the maximal value and the minimal value in a certain period of time, probability density estimated withε-SVR is incorporated into training data, and then the dimensionality of training data is increased. Thirdly, using the training data with a higher dimension, a method of predicting PPV called PI-ε-SVR is proposed. Finally, with the collected values of PPV induced by underwater blasting at Dajin Island in Taishan nuclear power station in China, contrastive experiments are made to show the effectiveness of the proposed method.



Sign in / Sign up

Export Citation Format

Share Document