scholarly journals Generalized Poisson Hidden Markov Model for Overdispersed or Underdispersed Count Data

2020 ◽  
Vol 43 (1) ◽  
pp. 71-82
Author(s):  
Sebastian George ◽  
Ambily Jose

The most suitable statistical method for explaining serial dependency in time series count data is that based on Hidden Markov Models (HMMs). These models assume that the observations are generated from a finite mixture of distributions governed by the principle of Markov chain (MC). Poisson-Hidden Markov Model (P-HMM) may be the most widely used method for modelling the above said situations. However, in real life scenario, this model cannot be considered as the best choice. Taking this fact into account, we, in this paper, go for Generalised Poisson Distribution (GPD) for modelling count data. This method can rectify the overdispersion and underdispersion in the Poisson model. Here, we develop Generalised Poisson Hidden Markov model (GP-HMM) by combining GPD with HMM for modelling such data. The results of the study on simulated data and an application of real data, monthly cases of Leptospirosis in the state of Kerala in South India, show good convergence properties, proving that the GP-HMM is a better method compared to P-HMM.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yu-Chen Zhang ◽  
Shao-Wu Zhang ◽  
Lian Liu ◽  
Hui Liu ◽  
Lin Zhang ◽  
...  

With the development of new sequencing technology, the entire N6-methyl-adenosine (m6A) RNA methylome can now be unbiased profiled with methylated RNA immune-precipitation sequencing technique (MeRIP-Seq), making it possible to detect differential methylation states of RNA between two conditions, for example, between normal and cancerous tissue. However, as an affinity-based method, MeRIP-Seq has yet provided base-pair resolution; that is, a single methylation site determined from MeRIP-Seq data can in practice contain multiple RNA methylation residuals, some of which can be regulated by different enzymes and thus differentially methylated between two conditions. Since existing peak-based methods could not effectively differentiate multiple methylation residuals located within a single methylation site, we propose a hidden Markov model (HMM) based approach to address this issue. Specifically, the detected RNA methylation site is further divided into multiple adjacent small bins and then scanned with higher resolution using a hidden Markov model to model the dependency between spatially adjacent bins for improved accuracy. We tested the proposed algorithm on both simulated data and real data. Result suggests that the proposed algorithm clearly outperforms existing peak-based approach on simulated systems and detects differential methylation regions with higher statistical significance on real dataset.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yanxue Zhang ◽  
Dongmei Zhao ◽  
Jinxing Liu

The biggest difficulty of hidden Markov model applied to multistep attack is the determination of observations. Now the research of the determination of observations is still lacking, and it shows a certain degree of subjectivity. In this regard, we integrate the attack intentions and hidden Markov model (HMM) and support a method to forecasting multistep attack based on hidden Markov model. Firstly, we train the existing hidden Markov model(s) by the Baum-Welch algorithm of HMM. Then we recognize the alert belonging to attack scenarios with the Forward algorithm of HMM. Finally, we forecast the next possible attack sequence with the Viterbi algorithm of HMM. The results of simulation experiments show that the hidden Markov models which have been trained are better than the untrained in recognition and prediction.


2008 ◽  
Vol 4 (3) ◽  
pp. 191 ◽  
Author(s):  
Muhannad Quwaider ◽  
Subir Biswas

This paper presents the architecture of a wearable sensor network and a Hidden Markov Model (HMM) processingframework for stochastic identification of body postures andphysical contexts. The key idea is to collect multi-modal sensor data from strategically placed wireless sensors over a human subject’s body segments, and to process that using HMM in order to identify the subject’s instantaneous physical context. The key contribution of the proposed multi-modal approach is a significant extension of traditional uni-modal accelerometry in which only the individual body segment movements, without their relative proximities and orientation modalities, is used for physical context identification. Through real-life experiments with body mounted sensors it is demonstrated that while the unimodal accelerometry can be used for differentiating activityintensive postures such as walking and running, they are not effective for identification and differentiation between lowactivity postures such as sitting, standing, lying down, etc. In the proposed system, three sensor modalities namely acceleration, relative proximity and orientation are used for context identification through Hidden Markov Model (HMM) based stochastic processing. Controlled experiments using human subjects are carried out for evaluating the accuracy of the HMMidentified postures compared to a naïve threshold based mechanism over different human subjects.


2016 ◽  
Vol 19 (58) ◽  
pp. 1
Author(s):  
Daniel Fernando Tello Gamarra

We demonstrate an improved method for utilizing observed gaze behavior and show that it is useful in inferring hand movement intent during goal directed tasks. The task dynamics and the relationship between hand and gaze behavior are learned using an Abstract Hidden Markov Model (AHMM). We show that the predicted hand movement transitions occur consistently earlier in AHMM models with gaze than those models that do not include gaze observations.


2019 ◽  
Vol 24 (1) ◽  
pp. 14 ◽  
Author(s):  
Luis Acedo

Hidden Markov models are a very useful tool in the modeling of time series and any sequence of data. In particular, they have been successfully applied to the field of mathematical linguistics. In this paper, we apply a hidden Markov model to analyze the underlying structure of an ancient and complex manuscript, known as the Voynich manuscript, which remains undeciphered. By assuming a certain number of internal states representations for the symbols of the manuscripts, we train the network by means of the α and β -pass algorithms to optimize the model. By this procedure, we are able to obtain the so-called transition and observation matrices to compare with known languages concerning the frequency of consonant andvowel sounds. From this analysis, we conclude that transitions occur between the two states with similar frequencies to other languages. Moreover, the identification of the vowel and consonant sounds matches some previous tentative bottom-up approaches to decode the manuscript.


2000 ◽  
Vol 23 (4) ◽  
pp. 494-495
Author(s):  
Ingmar Visser

Page's manifesto makes a case for localist representations in neural networks, one of the advantages being ease of interpretation. However, even localist networks can be hard to interpret, especially when at some hidden layer of the network distributed representations are employed, as is often the case. Hidden Markov models can be used to provide useful interpretable representations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Concepción Violán ◽  
Sergio Fernández-Bertolín ◽  
Marina Guisado-Clavero ◽  
Quintí Foguet-Boreu ◽  
Jose M. Valderas ◽  
...  

Abstract This study aimed to analyse the trajectories and mortality of multimorbidity patterns in patients aged 65 to 99 years in Catalonia (Spain). Five year (2012–2016) data of 916,619 participants from a primary care, population-based electronic health record database (Information System for Research in Primary Care, SIDIAP) were included in this retrospective cohort study. Individual longitudinal trajectories were modelled with a Hidden Markov Model across multimorbidity patterns. We computed the mortality hazard using Cox regression models to estimate survival in multimorbidity patterns. Ten multimorbidity patterns were originally identified and two more states (death and drop-outs) were subsequently added. At baseline, the most frequent cluster was the Non-Specific Pattern (42%), and the least frequent the Multisystem Pattern (1.6%). Most participants stayed in the same cluster over the 5 year follow-up period, from 92.1% in the Nervous, Musculoskeletal pattern to 59.2% in the Cardio-Circulatory and Renal pattern. The highest mortality rates were observed for patterns that included cardio-circulatory diseases: Cardio-Circulatory and Renal (37.1%); Nervous, Digestive and Circulatory (31.8%); and Cardio-Circulatory, Mental, Respiratory and Genitourinary (28.8%). This study demonstrates the feasibility of characterizing multimorbidity patterns along time. Multimorbidity trajectories were generally stable, although changes in specific multimorbidity patterns were observed. The Hidden Markov Model is useful for modelling transitions across multimorbidity patterns and mortality risk. Our findings suggest that health interventions targeting specific multimorbidity patterns may reduce mortality in patients with multimorbidity.


Author(s):  
KEREN YU ◽  
XIAOYI JIANG ◽  
HORST BUNKE

In this paper, we describe a systematic approach to the lipreading of whole sentences. A vocabulary of elementary words is considered. Based on the vocabulary, we define a grammar that generates a set of legal sentences. Our lipreading approach is based on a combination of the grammar with hidden Markov models (HMMs). Two different experiments were conducted. In the first experiment a set of e-mail commands is considered, while the set of sentences in the second experiment is given by all English integer numbers up to one million. Both experiments showed promising results, regarding the difficulty of the considered task.


Sign in / Sign up

Export Citation Format

Share Document