scholarly journals EXISTENCE CONDITIONS FOR k-BARYCENTRIC OLSON CONSTANT

2020 ◽  
Vol 28 (1) ◽  
pp. 39-53
Author(s):  
LUZ MARCHAN ◽  
OSCAR ORDAZ ◽  
FELICIA VILLAROEL ◽  
JOSÉ SALAZAR

Let (G, +) be a finite abelian group and 3 ≤ k ≤ |G| a positive integer. The k-barycentric Olson constant denoted by BO(k, G) is defined as the smallest integer ℓ such that each set A of G with |A| = ℓ contains a subset with k elements {a1, . . . , ak} satisfying a1 + · · · + ak = kaj for some 1 ≤ j ≤ k. We establish some general conditions on G assuring the existence of BO(k, G) for each 3 ≤ k ≤ |G|. In particular, from our results we can derive the existence conditions for cyclic groups and for elementary p-groups p ≥ 3. We give a special treatment over the existence condition for the elementary 2-groups.

1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


1960 ◽  
Vol 12 ◽  
pp. 447-462 ◽  
Author(s):  
Ruth Rebekka Struik

In this paper G = F/Fn is studied for F a free product of a finite number of cyclic groups, and Fn the normal subgroup generated by commutators of weight n. The case of n = 4 is completely treated (F/F2 is well known; F/F3 is completely treated in (2)); special cases of n > 4 are studied; a partial conjecture is offered in regard to the unsolved cases. For n = 4 a multiplication table and other properties are given.The problem arose from Golovin's work on nilpotent products ((1), (2), (3)) which are of interest because they are generalizations of the free and direct product of groups: all nilpotent groups are factor groups of nilpotent products in the same sense that all groups are factor groups of free products, and all Abelian groups are factor groups of direct products. In particular (as is well known) every finite Abelian group is a direct product of cyclic groups. Hence it becomes of interest to investigate nilpotent products of finite cyclic groups.


2011 ◽  
Vol 12 (01n02) ◽  
pp. 125-135 ◽  
Author(s):  
ABBY GAIL MASK ◽  
JONI SCHNEIDER ◽  
XINGDE JIA

Cayley digraphs of finite abelian groups are often used to model communication networks. Because of their applications, extremal Cayley digraphs have been studied extensively in recent years. Given any positive integers d and k. Let m*(d, k) denote the largest positive integer m such that there exists an m-element finite abelian group Γ and a k-element subset A of Γ such that diam ( Cay (Γ, A)) ≤ d, where diam ( Cay (Γ, A)) denotes the diameter of the Cayley digraph Cay (Γ, A) of Γ generated by A. Similarly, let m(d, k) denote the largest positive integer m such that there exists a k-element set A of integers with diam (ℤm, A)) ≤ d. In this paper, we prove, among other results, that [Formula: see text] for all d ≥ 1 and k ≥ 1. This means that the finite abelian group whose Cayley digraph is optimal with respect to its diameter and degree can be a cyclic group.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1537 ◽  
Author(s):  
Lingling Han ◽  
Xiuyun Guo

In this paper, we mainly count the number of subgroup chains of a finite nilpotent group. We derive a recursive formula that reduces the counting problem to that of finite p-groups. As applications of our main result, the classification problem of distinct fuzzy subgroups of finite abelian groups is reduced to that of finite abelian p-groups. In particular, an explicit recursive formula for the number of distinct fuzzy subgroups of a finite abelian group whose Sylow subgroups are cyclic groups or elementary abelian groups is given.


2017 ◽  
Vol 14 (01) ◽  
pp. 167-191 ◽  
Author(s):  
Dongchun Han ◽  
Hanbin Zhang

Let [Formula: see text] be an additive finite abelian group with exponent [Formula: see text]. For any positive integer [Formula: see text], let [Formula: see text] be the smallest positive integer [Formula: see text] such that every sequence [Formula: see text] in [Formula: see text] of length at least [Formula: see text] has a zero-sum subsequence of length [Formula: see text]. Let [Formula: see text] be the Davenport constant of [Formula: see text]. In this paper, we prove that if [Formula: see text] is a finite abelian [Formula: see text]-group with [Formula: see text] then [Formula: see text] for every [Formula: see text], which confirms a conjecture by Gao et al. recently, where [Formula: see text] is a prime.


2001 ◽  
Vol 63 (1) ◽  
pp. 115-121 ◽  
Author(s):  
T. Bier ◽  
A. Y. M. Chin

Let A be a finite Abelian group written additively. For two positive integers k, l with k ≠ l, we say that a subset S ⊂ A is of type (k, l) or is a (k, l) -set if the equation x1 + x2 + … + xk − xk+1−… − xk+1 = 0 has no solution in the set S. In this paper we determine the largest possible cardinality of a (k, l)-set of the cyclic group ℤP where p is an odd prime. We also determine the number of (k, l)-sets of ℤp which are in arithmetic progression and have maximum cardinality.


2017 ◽  
Vol 13 (02) ◽  
pp. 301-308 ◽  
Author(s):  
Mohan N. Chintamani ◽  
Prabal Paul

Let [Formula: see text] be a finite abelian group with exponent exp[Formula: see text]. Let [Formula: see text]. The constant [Formula: see text] is defined as the least positive integer [Formula: see text] such that for any given sequence [Formula: see text] of elements of [Formula: see text] with length [Formula: see text] it has a [Formula: see text] length [Formula: see text]-weighted zero-sum subsequence. In this article, we obtain the exact value of [Formula: see text] for [Formula: see text] and an upper bound for the case [Formula: see text], where [Formula: see text] is an odd prime, [Formula: see text] is an odd integer and [Formula: see text]. We also obtain the structural information on the extremal zero-sum free sequences.


10.37236/620 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Gerard Jennhwa Chang ◽  
Sheng-Hua Chen ◽  
Yongke Qu ◽  
Guoqing Wang ◽  
Haiyan Zhang

Suppose $G$ is a finite abelian group and $S$ is a sequence of elements in $G$. For any element $g$ of $G$, let $N_g(S)$ denote the number of subsequences of $S$ with sum $g$. The purpose of this paper is to investigate the lower bound for $N_g(S)$. In particular, we prove that either $N_g(S)=0$ or $N_g(S)\ge2^{|S|-D(G)+1}$, where $D(G)$ is the smallest positive integer $\ell$ such that every sequence over $G$ of length at least $\ell$ has a nonempty zero-sum subsequence. We also characterize the structures of the extremal sequences for which the equality holds for some groups.


2020 ◽  
pp. 1-14
Author(s):  
Maciej Zakarczemny

Let D(G) be the Davenport constant of a finite Abelian group G. For a positive integer m (the case m=1, is the classical case) let Em(G) (or ηm(G)) be the least positive integer t such that every sequence of length t in G contains m disjoint zero-sum sequences, each of length |G| (or of length ≤exp(G), respectively). In this paper, we prove that if G is an Abelian group, then Em(G)=D(G)–1+m|G|, which generalizes Gao’s relation. Moreover, we examine the asymptotic behaviour of the sequences (Em(G))m≥1 and (ηm(G))m≥1. We prove a generalization of Kemnitz’s conjecture. The paper also contains a result of independent interest, which is a stronger version of a result by Ch. Delorme, O. Ordaz, D. Quiroz. At the end, we apply the Davenport constant to smooth numbers and make a natural conjecture in the non-Abelian case.


2016 ◽  
Vol 101 (3) ◽  
pp. 310-334
Author(s):  
CHARLES C. EDMUNDS

An interchange ring,$(R,+,\bullet )$, is an abelian group with a second binary operation defined so that the interchange law$(w+x)\bullet (y+z)=(w\bullet y)+(x\bullet z)$ holds. An interchange near ring is the same structure based on a group which may not be abelian. It is shown that each interchange (near) ring based on a group $G$ is formed from a pair of endomorphisms of $G$ whose images commute, and that all interchange (near) rings based on $G$ can be characterized in this manner. To obtain an associative interchange ring, the endomorphisms must be commuting idempotents in the endomorphism semigroup of $G$. For $G$ a finite abelian group, we develop a group-theoretic analogue of the simultaneous diagonalization of idempotent linear operators and show that pairs of endomorphisms which yield associative interchange rings can be diagonalized and then put into a canonical form. A best possible upper bound of $4^{r}$ can be given for the number of distinct isomorphism classes of associative interchange rings based on a finite abelian group $A$ which is a direct sum of $r$ cyclic groups of prime power order. If $A$ is a direct sum of $r$ copies of the same cyclic group of prime power order, we show that there are exactly ${\textstyle \frac{1}{6}}(r+1)(r+2)(r+3)$ distinct isomorphism classes of associative interchange rings based on $A$. Several examples are given and further comments are made about the general theory of interchange rings.


Sign in / Sign up

Export Citation Format

Share Document