Can Gas-Permeability of Fractured-Shale Be Determined Accurately by Testing of Core Plugs, Drill Cuttings, and Crushed Samples?

Author(s):  
Faruk Civan
SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 720-732 ◽  
Author(s):  
F.. Civan

Summary Determining the nanodarcy gas permeability and other parameters of naturally and hydraulically induced fractured shale formations by testing the pressure transmission of core plugs, drill cuttings, and crushed samples is discussed. The author reviewed and modified the available methods for interpreting pressure tests with an emphasis on the differences between intrinsic and apparent permeability, and the generally overlooked temperature effects. It is significant to note that the temperature of gas varies during transport through porous rock samples and various dead-volumes when testing equipment used for permeability measurement is involved; this is because of unavoidable viscous dissipation and Joule-Thomson effects. Improved formulations and analysis methods that honor the relevant physics of gas transport and interactions with shale are presented, for both the generally assumed isothermal conditions and the realistic case of nonisothermal conditions. These improved formulations provide valuable insights when comparing and evaluating the currently available equations used for permeability calculations with the experimental data obtained by various testing methods. Better design and analysis of experiments for simultaneously determining several unknown parameters that impact the transport calculations, including deformation, adsorption, diffusion, viscous dissipation, Joule-Thomson effect, and deviation from Darcy flow, are described. It is recommended that the permeability and other parameters of shale samples be determined by simultaneous analysis of multiple pressure tests conducted under different conditions to accommodate temporally and spatially variable conditions by consideration of the temperature effect. The inherent limitations of the methods that rely on analytical solutions of the diffusivity equation on the basis of Darcy's law are also explained.


2014 ◽  
Vol 17 (8) ◽  
pp. 705-713 ◽  
Author(s):  
Hikaru Maeda ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima ◽  
Taro Shimonosono

2020 ◽  
Author(s):  
Adlai Katzenberg ◽  
Debdyuti Mukherjee ◽  
Peter J. Dudenas ◽  
Yoshiyuki Okamoto ◽  
Ahmet Kusoglu ◽  
...  

<p>Limitations in fuel cell electrode performance have motivated the development of ion-conducting binders (ionomers) with high gas permeability. Such ionomers have been achieved by copolymerization of perfluorinated sulfonic acid (PFSA) monomers with bulky and asymmetric monomers, leading to a glassy ionomer matrix with chemical and mechanical properties that differ substantially from common PFSA ionomers (e.g., Nafion™). In this study, we use perfluorodioxolane-based ionomers to provide fundamental insights into the role of the matrix chemical structure on the dynamics of structural and transport processes in ion-conducting polymers. Through <i>in-situ</i> water uptake measurements, we demonstrate that ionomer water sorption kinetics depend strongly on the properties and mass fraction of the matrix. As the PFSA mass fraction was increased from 0.26 to 0.57, the Fickian swelling rate constant decreased from 0.8 s<sup>-1</sup> to 0.2 s<sup>-1</sup>, while the relaxation rate constant increased from 3.1×10<sup>-3</sup> s<sup>-1</sup> to 4.0×10<sup>-3</sup>. The true swelling rate, in nm s<sup>-1</sup>, was determined by the chemical nature of the matrix; all dioxolane-containing materials exhibited swelling rates ~1.5 - 2 nm s<sup>-1</sup> compared to ~3 nm s<sup>-1</sup> for Nafion. Likewise, Nafion underwent relaxation at twice the rate of the fastest-relaxing dioxolane ionomer. Reduced swelling and relaxation kinetics are due to limited matrix segmental mobility of the dioxolane-containing ionomers. We demonstrate that changes in conductivity are strongly tied to the polymer relaxation, revealing the decoupled roles of initial swelling and relaxation on hydration, nanostructure, and ion transport in perfluorinated ionomers. </p>


Sign in / Sign up

Export Citation Format

Share Document