Extended arcsine distribution to proportional data: Properties and applications

2016 ◽  
Vol 53 (4) ◽  
pp. 440-466 ◽  
Author(s):  
Gauss M. Cordeiro ◽  
Artur J. Lemonte ◽  
Ana K. Campelo

We propose a new two-parameter continuous model called the extended arcsine distribution restricted to the unit interval. It is a very competitive model to the beta and Kumaraswamy distributions for modeling percentages, rates, fractions and proportions. We provide a mathematical treatment of the new distribution including explicit expressions for the ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating and quantile functions, Shannon entropy and order statistics. Maximum likelihood is used to estimate the model parameters and the expected information matrix is determined. We demonstrate by means of two applications to proportional data that it can give consistently a better fit than other important statistical models.

2019 ◽  
Vol 44 (4) ◽  
pp. 431-447 ◽  
Author(s):  
Scott Monroe

In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in practice, the expected information is not typically used, as it often requires a large amount of computation. In the present research, two methods to approximate the expected information by Monte Carlo are proposed. The first method is suitable for less complex IRT models such as unidimensional models. The second method is generally applicable but is designed for use with more complex models such as high-dimensional IRT models. The proposed methods are compared to existing methods using real data sets and a simulation study. The comparisons are based on simple structure multidimensional IRT models with two-parameter logistic item models.


2019 ◽  
Vol 15 (4) ◽  
pp. 849
Author(s):  
Hesham Reyad‎ ◽  
Mahmoud Ali Selim ◽  
Soha Othman

Based on the Nadarajah Haghighi distribution and the Topp Leone-G family in view of the T-X family, we introduce a new generator of continuous distributions with three extra parameters called the Nadarajah Haghighi Topp Leone-G family. Three sub-models of the new class are discussed. Main mathematical properties of the new family are investigated such as; quantile function, raw and incomplete moments, Bonferroni and Lorenz curves, moment and probability generating functions, stress-strength model, Shanon and Rényi entropies, order statistics and probability weighted moments. The model parameters of the new family is estimated by using the method of maximum likelihood and the observed information matrix is also obtained. We introduce two real applications to show the importance of the new family.


2021 ◽  
Vol 50 (5) ◽  
pp. 1-22
Author(s):  
Muhammad Hussain Tahir ◽  
Gauss M. Cordeiro ◽  
Muhammad Mansoor ◽  
Muhammad Zubair ◽  
Ayman Alzaatreh

We introduce a new model named the Kumaraswamy Pareto IV distribution which extends the Pareto and Pareto IV distributions. The density function is very flexible and can be left-skewed, right-skewed and symmetrical shapes. It hasincreasing, decreasing, upside-down bathtub, bathtub, J and reversed-J shaped hazard rate shapes. Various structural properties are derived including explicit expressions for the quantile function, ordinary and incomplete moments,Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, probability weighted moments and generating function. We provide the density function of the order statistics and their moments. The Renyi and q entropies are also obtained. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of three real-life data sets. In fact, our proposed model provides a better fit to these data than the gamma-Pareto IV, gamma-Pareto, beta-Pareto,exponentiated Pareto and Pareto IV models.


2017 ◽  
Vol 6 (3) ◽  
pp. 24 ◽  
Author(s):  
Gauss M. Cordeiro ◽  
Thiago A. N. De Andrade ◽  
Marcelo Bourguignon ◽  
Frank Gomes-Silva

We study a new two-parameter lifetime model called the exponentiated generalized standardized half-logistic distribution, which extends the half-logistic pioneered by Balakrishnan in the eighties. We provide explicit expressions for the moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves, and order statistics. The model parameters are estimated by the maximum likelihood method. A simulation study reveals that the estimators have desirable properties such as small biases and variances even in moderate sample sizes. We prove empirically that the new distribution provides a better fit to a real data set than other competitive models.


Author(s):  
Hesham Reyad ◽  
Soha Ibrahim

In this paper, we introduce a new four parameter continuous model, called the beta compound Rayleigh (BCR) distribution that extends the compound Rayleigh distribution. Basic properties of the proposed distribution such as; mean, variance, coefficient of variation, raw and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics are investigated. We obtain the maximum likelihood estimates and the observed information matrix for the model parameters. Two real data sets are used to illustrate the usefulness of the new model.


2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


2017 ◽  
Vol 6 (3) ◽  
pp. 141 ◽  
Author(s):  
Thiago A. N. De Andrade ◽  
Luz Milena Zea Fernandez ◽  
Frank Gomes-Silva ◽  
Gauss M. Cordeiro

We study a three-parameter model named the gamma generalized Pareto distribution. This distribution extends the generalized Pareto model, which has many applications in areas such as insurance, reliability, finance and many others. We derive some of its characterizations and mathematical properties including explicit expressions for the density and quantile functions, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, R\'enyi entropy and order statistics. We discuss the estimation of the model parameters by maximum likelihood. A small Monte Carlo simulation study and two applications to real data are presented. We hope that this distribution may be useful for modeling survival and reliability data.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
K. S. Sultan ◽  
A. S. Al-Moisheer

We discuss the two-component mixture of the inverse Weibull and lognormal distributions (MIWLND) as a lifetime model. First, we discuss the properties of the proposed model including the reliability and hazard functions. Next, we discuss the estimation of model parameters by using the maximum likelihood method (MLEs). We also derive expressions for the elements of the Fisher information matrix. Next, we demonstrate the usefulness of the proposed model by fitting it to a real data set. Finally, we draw some concluding remarks.


1989 ◽  
Vol 14 (4) ◽  
pp. 335-350 ◽  
Author(s):  
Robert J. Mislevy ◽  
Kathleen M. Sheehan

The Fisher, or expected, information matrix for the parameters in a latent-variable model is bounded from above by the information that would be obtained if the values of the latent variables could also be observed. The difference between this upper bound and the information in the observed data is the “missing information.” This paper explicates the structure of the expected information matrix and related information matrices, and characterizes the degree to which missing information can be recovered by exploiting collateral variables for respondents. The results are illustrated in the context of item response theory models, and practical implications are discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249028
Author(s):  
Ehsan Fayyazishishavan ◽  
Serpil Kılıç Depren

The two-parameter of exponentiated Gumbel distribution is an important lifetime distribution in survival analysis. This paper investigates the estimation of the parameters of this distribution by using lower records values. The maximum likelihood estimator (MLE) procedure of the parameters is considered, and the Fisher information matrix of the unknown parameters is used to construct asymptotic confidence intervals. Bayes estimator of the parameters and the corresponding credible intervals are obtained by using the Gibbs sampling technique. Two real data set is provided to illustrate the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document