Effect of newly developed interspecific hybrid rootstocks on mineral nutrient composition and fruit quality in tomato (Solanum lycopersicum L.)

2021 ◽  
Author(s):  
A. Kabas ◽  
I. Celik

AbstractTomato (Solanum lycopersicum L.) is one of the important vegetables in the world due to large production area and consumer interest. Biotic and abiotic stresses have negative effect on tomato production. Utilisation of rootstocks conferring resistance to biotic stresses can be considered as the most effective and environment friendly solution in tomato production to overcome this problem. Although wild tomato species is a good rootstock candidate due to its resistance to multiple plant diseases, effects of wild tomato species as rootstock on mineral nutrient composition and fruit quality are not clear. In the present study, effects of interspecific hybrids derived from two wild tomato species (Solanum habrochaites and Solanum penellii) as rootstock on tomato fruit mineral nutrient composition (phosphor (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)) and fruit quality traits (soluble solids content (SSC), pH, percent titratable acidity (TA), and lycopene content) were evaluated. In the study, Amaron, Armstrong, and Arazi commercial rootstocks were used as control and AK0004 F1 (candidate tomato hybrid) was used as a source of scion. As result, only lycopene content was affected by different rootstocks. S. penellii was found to be with more potential for lycopene content. For mineral nutrient composition, all hybrids and controls had similar contents of potassium, phosphor, calcium, and magnesium. Manganese and copper contents decreased in all plants. S. habrochaites had more potential regarding nitrogen, iron, and zinc contens than S. penellii. This is the first study to evaluate two interspecific hybrids derived from S. habrochaites and S. penellii, and the results might be useful to understand effects of rootstocks derived from wild tomato species on mineral nutrient content and fruit quality.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 575
Author(s):  
Takashi Naoi ◽  
Tatsuji Hataya

To date, natural resistance or tolerance, which can be introduced into crops by crossing, to potato spindle tuber viroid (PSTVd) has not been reported. Additionally, responses to PSTVd infection in many wild tomato species, including some species that can be crossed with PSTVd-susceptible cultivated tomatoes (Solanum lycopersicum var. lycoperaicum), have not been ascertained. The aim of this study was to evaluate responses to PSTVd infection including resistance and tolerance. Accordingly, we inoculated several cultivated and wild tomato species with intermediate and lethal strains of PSTVd. None of the host plants exhibited sufficient resistance to PSTVd to render systemic infection impossible; however, these plants displayed other responses, including tolerance. Further analysis of PSTVd accumulation revealed low accumulation of PSTVd in two wild species, exhibiting high tolerance, even to the lethal strain. Additionally, F1 hybrids generated by crossing a PSTVd-sensitive wild tomato (Solanum lycopersicum var. cerasiforme) with these wild relatives also exhibited tolerance to the lethal PSTVd strain, which is accompanied by low PSTVd accumulation during early infection. These results indicate that the tolerance toward PSTVd in wild species is a dominant trait and can be utilized for tomato breeding by crossing.


2018 ◽  
Vol 36 (3) ◽  
pp. 362-370
Author(s):  
André R Zeist ◽  
Juliano TV Resende ◽  
Marcos V Faria ◽  
André Gabriel ◽  
Elisa Adriano ◽  
...  

ABSTRACT Gas exchanges in species and interspecific hybrids of tomato in different environments may contribute to the development and selection of genotypes with a higher tolerance to adverse cultivation conditions. This study aimed to assess the photosynthetic characteristics of wild tomato species and the cultivar Redenção, as well as the respective F1 hybrids of interspecific crosses cultivated under two environments. The experimental design was a randomized block design with three replications and the assessment of six wild accessions, one cultivar, and the respective interspecific hybrids under two environments. At 14, 28, 42, 56, and 70 days after transplanting (DAT), gas exchange characteristics were assessed by means of a portable photosynthesis measurement system. The stomatal density of abaxial and adaxial surfaces of first-order leaflets was estimated under a protected cultivation at 56 DAT. We observed a higher influence of wild tomato species and interspecific hybrids on the assessed characteristics when compared to the cultivation environments. The accession ‘LA-716’ and the hybrid ‘Redenção’ × ‘LA-716’ presented the highest water use efficiency and the accessions ‘PI-127826’ and ‘PI-134417’ and the interspecific hybrids ‘Redenção’ × ‘PI-127826’ and ‘Redenção’ × ‘PI-134417’ presented the highest values of CO2 assimilation, transpiration, instantaneous in vivo carboxylation efficiency of Rubisco, and number of stomata on the abaxial leaflet surface. Thus, the descendants of Solanum habrochaites are an interesting alternative to breeding programs that aim to make advances in obtaining strains that exhibit improvement in their photosynthetic characteristics.


2014 ◽  
Author(s):  
Ilan Levin ◽  
John W. Scott ◽  
Moshe Lapidot ◽  
Moshe Reuveni

Abstract. Tomato yellow leaf curl virus (TYLCV), a monopartitebegomovirus, is one of the most devastating viruses of cultivated tomatoes and poses increasing threat to tomato production worldwide. Because all accessions of the cultivated tomato are susceptible to these viruses, wild tomato species have become a valuable resource of resistance genes. QTL controlling resistance to TYLCV and other begomoviruses (Ty loci) were introgressed from several wild tomato species and mapped to the tomato genome. Additionally, a non-isogenic F₁diallel study demonstrated that several of these resistance sources may interact with each other, and in some cases generate hybrid plants displaying lower symptoms and higher fruit yield compared to their parental lines, while their respective resistance genes are not necessarily allelic. This suggests that pyramiding genes originating from different resistance sources can be effective in obtaining lines and cultivars which are highly resistant to begomoviruses. Molecular tools needed to test this hypothesis have been developed by our labs and can thus significantly improve our understanding of the mechanisms of begomovirus resistance and how to efficiently exploit them to develop wider and more durable resistance. Five non-allelic Ty loci with relatively major effects have been mapped to the tomato genome using molecular DNA markers, thereby establishing tools for efficient marker assisted selection, pyramiding of multiple genes, and map based gene cloning: Ty-1, Ty-2, Ty-3, Ty-4, and ty-5. This research focused on Ty-3 and Ty-4 due to their broad range of resistance to different begomoviruses, including ToMoV, and on ty-5 due to its exceptionally high level of resistance to TYLCV and other begomoviruses. Our aims were: (1) clone Ty-3, and fine map Ty-4 and Ty-5 genes, (2)introgress each gene into two backgroundsand develop semi isogenic lines harboring all possible combinations of the three genes while minimizing linkage-drag, (3) test the resulting lines, and F₁ hybrids made with them, for symptom severity and yield components, and (4) identify and functionally characterize candidate genes that map to chromosomal segments which harbor the resistance loci. During the course of this research we have: (1) found that the allelic Ty-1 and Ty-3 represent two alternative alleles of the gene coding DFDGD-RDRP; (2) found that ty-5is highly likely encoded by the messenger RNA surveillance factor PELOTA (validation is at progress with positive results); (3) continued the map-based cloning of Ty-4; (4) generated all possible gene combinations among Ty-1, Ty-3 and ty-5, including their F₁ counterparts, and tested them for TYLCV and ToMoV resistance; (5) found that the symptomless line TY172, carrying ty-5, also carries a novel allele of Ty-1 (termed Ty-1ⱽ). The main scientific and agricultural implications of this research are as follows: (1) We have developed recombination free DNA markers that will substantially facilitate the introgression of Ty-1, Ty-3 and ty-5 as well as their combinations; (2) We have identified the genes controlling TYLCV resistance at the Ty-1/Ty-3 and ty-5 loci, thus enabling an in-depth analyses of the mechanisms that facilitate begomovirus resistance; (3) Pyramiding of Ty resistance loci is highly effective in providing significantly higher TYLCV resistance.


Genome ◽  
2009 ◽  
Vol 52 (11) ◽  
pp. 935-956 ◽  
Author(s):  
Hamid Ashrafi ◽  
Matthew Kinkade ◽  
Majid R. Foolad

The narrow genetic base of the cultivated tomato, Solanum lycopersicum L., necessitates introgression of new variation from related species. Wild tomato species represent a rich source of useful genes and traits. Exploitation of genetic variation within wild species can be facilitated by the use of molecular markers and genetic maps. Recently we identified an accession (LA2093) within the red-fruited wild tomato species Solanum pimpinellifolium L. with exceptionally desirable characteristics, including disease resistance, abiotic stress tolerance, and high fruit lycopene content. To facilitate genetic characterization of such traits and their exploitation in tomato crop improvement, we developed a new recombinant inbred line (RIL) population from a cross between LA2093 and an advanced tomato breeding line (NCEBR-1). Furthermore, we constructed a medium-density molecular linkage map of this population using 294 polymorphic markers, including standard RFLPs, EST sequences (used as RFLP probes), CAPS, and SSRs. The map spanned 1091 cM of the tomato genome with an average marker spacing of 3.7 cM. A majority of the EST sequences, which were mainly chosen based on the putative role of their unigenes in disease resistance, defense-related response, or fruit quality, were mapped onto the tomato chromosomes for the first time. Co-localizations of relevant EST sequences with known disease resistance genes in tomato were also examined. This map will facilitate identification, genetic exploitation, and positional cloning of important genes or quantitative trait loci in LA2093. It also will allow the elucidation of the molecular mechanism(s) underlying important traits segregating in the RIL population. The map may further facilitate characterization and exploitation of genetic variation in other S. pimpinellifolium accessions as well as in modern cultivars of tomato.


Euphytica ◽  
2004 ◽  
Vol 135 (3) ◽  
pp. 283-296 ◽  
Author(s):  
Heather E. Yates ◽  
Anne Frary ◽  
Sami Doganlar ◽  
Anna Frampton ◽  
Nancy T. Eannetta ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Carlos A. Avila ◽  
Thiago G. Marconi ◽  
Zenaida Viloria ◽  
Julianna Kurpis ◽  
Sonia Y. Del Rio

Abstract The tomato-potato psyllid (TPP), Bactericera cockerelli, is a vector for the phloem-limited bacterium Candidatus Liberibacter solanacearum (Lso), the causative agent of economically important diseases including tomato vein-greening and potato zebra chip. Here, we screened 11 wild tomato relatives for TPP resistance as potential resources for tomato (Solanum lycopersicum) cultivar development. Six accessions with strong TPP resistance (survival <10%) were identified within S. habrochaites, S. pennelli, S. huaylasense, S. chmielewskii, S. corneliomulleri, and S. galapagense. Two S. pennelli and S. corneliomulleri accessions also showed resistance to Lso. We evaluated recombinant inbred lines (RILs) carrying resistance from S. habrochaites accession LA1777 in the S. lycopersicum background and identified major quantitative trait loci (QTLs) responsible for adult TPP mortality and fecundity in several RILs carrying insertions in different chromosomes, indicating the polygenic nature of these traits. Analysis of a major resistance QTL in RIL LA3952 on chromosome 8 revealed that the presence of Lso is required to increase adult TPP mortality. By contrast, the reduced TPP oviposition trait in LA3952 is independent of Lso. Therefore, resistance traits are available in wild-tomato species, although their complex inheritance and modes of action require further characterisation to optimise their utilisation for tomato improvement.


Sign in / Sign up

Export Citation Format

Share Document