scholarly journals A reliable HPLC-DAD method for simultaneous determination of related substances in TBI-166 active pharmaceutical ingredient

2020 ◽  
Vol 32 (2) ◽  
pp. 80-85
Author(s):  
Tingting Zhang ◽  
Wanting Yin ◽  
Bo Jin ◽  
Tong Li ◽  
Chen Ma

A sensitive, stability-indicating reversed-phase high-performance liquid chromatography with diode array detection (HPLC–DAD) method has been developed for the determination of TBI-166 and its 10 kinds of related impurities. Chromatographic separation was achieved on a Kromasil ODS column (250 mm × 4.6 mm, 5 μm), with a gradient elution of the mobile phase system consisting of acetonitrile and 1% ammonium formate solution (with 0.2% formic acid). The flow rate was 1.0 mL/min, and the detection wavelength was set at 251 nm. The method was validated according to the International Conference on Harmonization (ICH) guidelines with respect to selectivity, linearity, limits, accuracy, precision, and robustness. The calibration curves were linear from LOQ to 150% of the specification limit of impurity with correlation coefficients not less than 0.999. The limits of quantitation were between 0.123 and 0.257 μg/mL. Accuracy for the related substances was estimated by the recovery ranged from 94.6% to 111.2%. The method was proved to be reliable for the determination of related substances in TBI-166 bulk drug, which is essential and important in the quality control.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Vita Giaccone ◽  
Giuseppe Polizzotto ◽  
Andrea Macaluso ◽  
Gaetano Cammilleri ◽  
Vincenzo Ferrantelli

The aim of our present work was the development of a rapid high-performance liquid chromatography method with electrospray ionization and tandem mass spectrometry detection (LC-ESI-MS/MS) for the determination of several corticosteroids in cosmetic products. Corticosteroids are suspected to be illegally added in cosmetic preparations in order to enhance the curative effect against some skin diseases. Sample preparation step consists in a single extraction with acetonitrile followed by centrifugation and filtration. The compounds were separated by reversed-phase chromatography with water and acetonitrile (both with 0.1% formic acid) gradient elution and detected by ESI-MS positive and negative ionization mode. The method was validated at the validation level of 0.1 mg kg−1. Linearity was studied in the 5–250 μg L−1 range and linear coefficients (r2) were all over 0.99. The accuracy and precision of the method were satisfactory. The LOD ranged from 0.085 to 0.109 mg kg−1 and the LOQ from 0.102 to 0.121 mg kg−1. Mean recoveries for all the analytes were within the range 91.9–99.2%. The developed method is sensitive and useful for detection, quantification, and confirmation of these corticosteroids in cosmetic preparations and can be applied in the analysis of the suspected samples under investigation.


2007 ◽  
Vol 4 (1) ◽  
pp. 109-116 ◽  
Author(s):  
K. Basavaiah ◽  
B. C. Somashekar

A rapid, highly sensitive high performance liquid chromatographic method has been developed for the determination of finasteride(FNS) in bulk drug and in tablets. FNS was eluted from a ODS C18reversed phase column at laboratory temperature (30 ± 2°C) with a mobile phase consisting of methanol and water (80+20) at a flow rate of 1 mL min-1with UV detection at 225 nm. The retention time was ∼ 6.1 min and each analysis took not more than 10 min. Quantitation was achieved by measurement of peak area without using any internal standard. Calibration graph was linear from 2.0 to 30 μg mL-1with limits of detection (LOD) and quantification (LOQ) being 0.2 and 0.6 μg mL-1, respectively. The method was validated according to the current ICH guidelines. Within-day co efficients of variation (CV) ranged from 0.31 to 0.69% and between-day CV were in the range 1.2-3.2%. Recovery of FNS from the pharmaceutical dosage forms ranged from 97.89 – 102.9 with CV of 1.41-4.13%. The developed method was compared with the official method for FNS determination in its tablet forms.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (11) ◽  
pp. 46-50
Author(s):  
Z. G Khan ◽  
◽  
S. S. Patil ◽  
P. K. Deshmukh ◽  
P. O. Patil

Novel, isocratic reversed phase high performance liquid chromatography method was developed and validated for the determination of enzalutamide (EZA) in bulk drug and pharmaceutical formulation. Efficient separation was achieved on PrincetonSPHER C18 100A, 5μ (250×4.6 mm) under the isocratic mode of elution using acetonitrile: water (80:20) % V/V as a mobile phase pumped in to the column at flow rate 1.0 mL/min. The effluent was monitored at 237.0 nm using UV detector. EZA was eluted in the given mobile phase at retention time (tR) of 3.2 minutes. The standard calibration curve was linear over the concentration range 10 - 60 μg/mL with correlation coefficient 0.997. The method was validated for accuracy, precision, sensitivity, robustness, ruggedness and all the resulting data treated statistically. The system suitability parameters like retention time, theoretical plates, tailing factor, capacity factor were found within the limit.


2011 ◽  
Vol 30 (2) ◽  
pp. 139 ◽  
Author(s):  
Ana Petkovska ◽  
Hristina Babunovska ◽  
Marina Stefova

Quality control of pharmaceuticals requires development of fast, efficient and reliable methods for determination of active compounds as well as known and very often unknown impurities within defined concentration ranges. In this work, a simple and rapid HPLC-UV-DAD method for identification and quantification of pholcodine process related impurities and some degradation products was developed and validated. Pholcodine and its five structural analogues such as morphine, codeine, thebaine, oripavine, and papaverine were separated in less than 10 minutes using reversed phase LiChrospher C-8 column. For optimal chromatographic performance with reproducible retention times, gradient elution with 2% ammonium hydroxide in water and acetonitrile was used. The method was validated by establishing its selectivity, specifity, sensitivity, linearity, intra- and inter-day precision and robustness. All tested parameters confirmed that the method is suitable for determination of pholcodine and its five impurities in pharmaceutical drug samples. The results obtained from real sample analysis give support to the suitability of the proposed method for the purpose of quality control.


Author(s):  
V Phani Kumar ◽  
Y Sunandamma

A high performance liquid chromatographic method with UV detection was developed and validated for simultaneous determination of Pioglitazone and Clopidogrel. Separation was performed on a C18 column by isocratic elution with a mobile phase of Methanol: Acetonitrile: Water (80:10:10) at pH 4.6. The UV detection was set at 230 nm. The method proved to be specific, accurate, precise and linear over the concentration ranges of 20-120ppm for both Pioglitazone and Clopidogrel with correlation coefficients always >0.999 for both drugs. The intra-day and inter-day precision and accuracy were less than 2 for both analytes. DOI: http://dx.doi.org/10.3329/ijpls.v2i1.14580 International Journal of Pharmaceutical and Life Sciences Vol.2(1) 2013: 1-9


1998 ◽  
Vol 44 (7) ◽  
pp. 1481-1488 ◽  
Author(s):  
Maria Shipkova ◽  
Paul Dieter Niedmann ◽  
Victor William Armstrong ◽  
Ekkehard Schütz ◽  
Eberhard Wieland ◽  
...  

Abstract We describe a reversed-phase HPLC method for determination of total mycophenolic acid (MPA), its free concentration (MPAf), and the glucuronide metabolite (MPAG), based on simple sample preparation and gradient elution chromatography. The compounds were quantified in parallel by absorbance at 254 nm and 215 nm in the internal standard mode. Linearity was verified up to 50 mg/L for MPA and up to 500 mg/L for MPAG (r >0.999). Detection limits at 215 and 254 nm were, respectively, 0.01 and 0.03 mg/L for MPA, and 0.03 and 0.1 mg/L for MPAG. The recovery of MPA was 95–106%;recovery of MPAG was 96–106%. The imprecision (CV) for MPA (0.2–25 mg/L) was <8.4% (254 nm) and <4.4% (215 nm) within day (n = 12) and <9.2% (254 nm) and <6.2% (215 nm) between days (n = 12). The imprecision for MPAG (10–250 mg/L) was <4.9% (254 nm) and <3.4% (215 nm) within day, and <6.1% (254 nm) and <5.9% (215 nm) between days. For quantification of MPAf, 100 μL of ultrafiltrate was applied directly to the column. The detection limit was 0.005 mg/L at 215 nm and 0.015 mg/L at 254 nm. In the range between 18–210 μg/L, the within-day CVs were <11.8% (n = 12) and the between-day CVs were <15.8% (n = 12).


2010 ◽  
Vol 93 (3) ◽  
pp. 798-803 ◽  
Author(s):  
Atul A Shirkhedkar ◽  
Sanjay J Surana

Abstract Atorvastatin calcium is a synthetic HMGCoA reductase inhibitor that is used as a cholesterol-lowering agent. A simple, sensitive, selective, and precise RP-HPTLCdensitometric determination of atorvastatin calcium both as bulk drug and from pharmaceutical formulation was developed and validated according to International Conference on Harmonization guidelines. The method used aluminum sheets precoated with silica gel 60 RP18F254s as the stationary phase, and the mobile phase consisted of methanolwater (3.5 + 1.5, v/v). The system gave a compact band for atorvastatin calcium with an Rf value of 0.62 0.02. Densitometric quantification was carried out at 246 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with r = 0.9992 in the working concentration range of 100-800 ng/band. The method was validated for precision, accuracy, ruggedness, robustness, specificity, recovery, LOD, and LOQ. The LOD and LOQ were 6 and 18 ng, respectively. The drug underwent hydrolysis when subjected to acidic conditions and was found to be stable under alkali, oxidation, dry heat, and photodegradation conditions. Statistical analysis proved that the developed RP-HPTLCdensitometry method is reproducible and selective and that it can be applied for identification and quantitative determination of atorvastatin calcium in bulk drug and tablet formulation.


Sign in / Sign up

Export Citation Format

Share Document