Effect of sowing dates on genetic components in six-rowed barley

2008 ◽  
Vol 56 (3) ◽  
pp. 349-356
Author(s):  
Y. Sharma ◽  
S. Sharma

The genetics of yield and related traits was studied in barley ( Hordeum vulgare L.) by means of 10 × 10 half-diallel progenies (F 1 and F 2 ) at three sowing dates. An additive-dominance model fitted only for flag leaf area, spike length and 1000-grain weight at different sowing dates. Both additive (D) and dominance components (H 1 and H 2 ) were significant for all the traits studied, indicating the preponderance of dominance components in controlling the inheritance for these traits. The value of (H 1 /D) 1/2 indicated over-dominance for all the traits except for flag leaf area. Values of ‘F’ indicated an excess of dominant alleles in the parents for all traits except for flag leaf area. The environmental component ‘E’ was significant for all traits. The ratio of H 2 /4H 1 indicated the symmetrical distribution of genes for all the traits studied. The value of h 2 /H 2 was less than one for all traits except for spike length, suggesting that a dominant gene was involved in controlling the inheritance of spike length, whereas multiple genes controlled the inheritance of the remaining traits. The heritability estimates were relatively moderate for flag leaf area and 1000-grain weight, but low for all other traits. However, epistatic interactions had an important role in the expression of other traits. Breeding methods such as bi-parental mating in early segregating generations or diallel selective mating may be advantageous to combine important yield component characters for a tangible advance in six-rowed barley.

2018 ◽  
Vol 6 (1) ◽  
pp. 01-07 ◽  
Author(s):  
Amir Sohail ◽  
Hidayatur Rahman ◽  
Farhat Ullah ◽  
Syed M.A. Shah ◽  
Tanvir Burni ◽  
...  

This research was carried out to check genetic variability, heritability and genetic advance in 11 F4 bread wheat (Triticum aestivum L.) genotypes (10 F4 lines and one check) in a randomized block design with three replications at the University of Agriculture Peshawar, Pakistan during 2015-16. Data was/were taken on parameters such as days to heading (days), plant height (cm), flag leaf area (cm2), spike length (cm), grain weight spike-1 (g), 1000-grain weight (g), grain yield plant-1 (g), biological yield plant-1 (g)and harvest index (%). The statistically significant difference(s) was/were detected for the investigated traits.  The high magnitude of heritability (˃0.62) was noted for all parameters except spike length (0.57) which was moderate. Low expected genetic advance was recorded for days to heading (3.90%) and spike length (8.13%), moderate expected genetic advance was observed for plant height (9.95%), grain weight spike-1 (11.54%) and 1000 grain weight (13.41%), while high expected genetic advance was noted for flag leaf area (24.72%), grain yield plant-1 (20.45%), biological yield plant-1 (23.64%) and harvest index (24%). Grain yield plant-1 was non-significantly and positively correlated with days to heading (rG = 0.19NS and rP = 0.07 NS),  plant height (rG = 0.30 NS and rP = 0.26 NS), flag leaf area (rG = 0.25 NS and rP = 0.18 NS), spike length (rG = 0.01 NS and rP = 0.07 NS), grain weight spike-1 (rG = 0.28 NS and rP = 0.22 NS) and 1000-grain weight (rG = 0.02 NS and rP = 0.07 NS) at both genotypic and phenotypic levels. While significantly and positively correlated with biological yield plant-1 (rG = 0.34* and rP = 0.33*) and harvest index (rG = 0.58** and rP = 0.66**) at both genotypic and phenotypic levels. High heritability showed that these traits are under genetic control and single plant selection could be started in F5 generation. The strong correlation of grain yield plant-1 with the mentioned traits showed that grain yield could be indirectly improved by improving these traits.


2019 ◽  
Vol 4 (02) ◽  
pp. 135-139
Author(s):  
Ravi Kumar ◽  
Anant Kumar ◽  
Joginder Singh

Genetic variability, heritability, genetic advance and correlation coefficients were studied in 104 genotypes of wheat genotypes for yield and yield contributing traits. Both GCV and PCV were found to be moderate for flag leaf area, biological yield per plant, grain yield per plant and ash content. The days to ear emergence, days to maturity, plant height, harvest index and 1000-grain weight low GCV and PCV values were observed. Number of productive tillers per plant and spike length recorded moderate value of PCV and low value of GCV. High estimate of heritability in narrow sense was recorded for number of productive tillers per plant, biological yield per plant, harvest index and grain yield per plant, while it was moderate for days to ear emergence, days to maturity, plant height, flag leaf area, spike length, grains per spike and low heritability were recorded for 1000-grain weight. High heritability coupled with high genetic advance in per cent of mean was recorded for biological yield per plant and grain yield per plant. Grain yield per plant exhibited highly significant and positive association with 1000-grain weight, harvest index, biological yield per plant, grains per spike, number of productive tillers per plant and days to maturity.


2017 ◽  
Vol 4 (4) ◽  
pp. 529-536
Author(s):  
Deepak Vitrakoti ◽  
Sheetal Aryal ◽  
Santosh Rasaily ◽  
Bishnu Raj Ojha ◽  
Raju Kharel ◽  
...  

Barley, being a tremendous opportunities crop, we are far back regarding study, research and utilization. An experiment was conducted 2014-2015 to evaluate the barley genotypes for their yield attributing traits and correlation and causation. Eleven yield contributing traits viz., days to booting, heading and flowering; peduncle length, spike length, plant height, flag leaf area, flag leaf-1 area, thousand grain weight, biological weight and yield per hectare were recorded. High significant variation among genotypes was found for traits under study. Genotypes SBYT3-13#1115 (1960 kg), 14-SB-NAK-MR#17 (1760 kg) and AM POP#26 (1660 kg) were found to be superior for their per se performance based on grain yield per hectare, yield attributing and other quantitative traits. Thousand grains weight (0.333) had positively highest significant correlation with grain yield per hectare followed by spike length (0.310). Grain yield per hectare showed negative highly significant correlation with days to flowering (-0.796) followed by days to heading (-0.761) and days to booting (-0.663). Peduncle length (0.229), plant height (0.226), biological weight (0.181) and flag leaf area (0.032) were positively correlated with grain yield per hectare while flag leaf-1 area(-0.029) was negatively correlated. Thus, selection for genotypes with higher thousand grain weight and spike length accommodating earlier days to flowering, heading and booting is a prerequisite for attaining improvement in grain yield per hectare.Int J Appl Sci Biotechnol, Vol 4(4): 529-536


2021 ◽  
Vol 13 (1) ◽  
pp. 10891
Author(s):  
Hayati AKMAN

Wheat species and wild relatives offer promising resources for wheat improvement and research in the current period of the genetic narrowing of modern wheat cultivars. The present study was performed to evaluate the morphological and anatomical traits of 20 diverse genotypes including Triticum and Aegilops species with intergeneric and interspecific wheat hybrids, which were compared with modern bread and durum wheat cultivars locally adapted to rainfed and irrigated conditions. The study showed that stomata density and size ranged from 55.3 to 108.6 stomata/mm2 and 401.4 to 1296 µm2, respectively, in the selected genotypes. Moving tetraploid to hexaploid genotypes, increased chromosome numbers yielded lower densities of large stomata in wheat species and hybrids. In this regard, the stomatal patterns of two hexaploid wheat hybrids and a wheat species including ‘Agrotriticum’, ‘Aegilotriticum’, and T. compactum, were of low density and large size stomata compared to T. durum cv. ‘Kunduru 1149’ with high density and small size stomata. Interestingly, the wild progenitor of the bread wheat D genome, Ae. tauschii, had a high density of the smallest stomata among the studied genotypes. The study further indicated that morphological parameters decreased under rainfed conditions compared to those under irrigated conditions, with levels varying among the genotypes. The rainfed flag leaf area and 1000-grain weight varied from 0.9 to 23.7 cm2 and from 7.3 to 61.9 g, respectively under rainfed conditions, while they ranged from 1.2 to 35.7 cm2 and 11.5 to 69.9 g under irrigated conditions. The flag leaf area had a significant and strong association with 1000-grain weight under rainfed (r2= 0.79) and irrigated (r2 = 0.77) conditions. T. turanicum and T. polonicum were characterized by the significantly highest 1000-grain weight in both rainfed and irrigated conditions. This study suggests that these wheat species with high 1000-grain weight might have promising alleles to be transferred into durum wheat to increase grain yield.


2020 ◽  
Vol 23 (2) ◽  
pp. 202-210
Author(s):  
Muradjan M.m. Noori ◽  
Mohammed A. Hussain ◽  
Abbas Alo Khether

The experiment was carried out at College of Agricultural Engineering Sciences farm, Duhok University, the experiment was laid out in Randomize Complete Block Design with three replications and arranged in factorial experiment to evaluate the effect of organic fertilization levels and bread wheat genotypes (Tamoz-2, IPA-95 and Abu. Garib-3), and the foliar organic mineral fertilizer used at three rates 0.5, 0.75 and one litter. The results showed highly significant effect of bread wheat genotypes in all studied characters with exception of weight grain spike -1 , also organic fertilizer exhibited significant effect in plant height, leaf area, 1000-grain weight, number of grain spike, length of spike and grain yield, while the effect of interaction between genotypes and organic fertilizer levels showed highly significant effect for all characters except of spike length, the results indicated that the rate 1 liter and Abu. Garib-3 gave the maximum plant height, leaf area, 1000 grain weight, number of grain spike-1 , weight of grain spike-1 , spike length and grain weight with values (91.2, 56.9, 47.5, 48.7, 2.8, 8.7 and 355.0 gm) respectively. The correlation coefficient of grain yields gave highly significant with plant height (0.972), leaf area (0.916), 1000 grain weight (0.923), number of grain spike-1 (0.951) and spike length (0.974). The results for this study had shown that, using organic fertilizer and suitable wheat genotypes effects significantly on yield and most of yield components.


2015 ◽  
Vol 4 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Imran Khan ◽  
Fida Mohammad ◽  
Fahim Ullah Khan

Development of superior crop varieties is the prime objectives of all plant breeding programs. To determine genetic variability, heritability and genetic advance, 24 elite bread wheat lines were planted in randomized complete block design with three replications at the University of Agriculture, Peshawar under rainfed conditions. Data were recorded on days to heading, days to maturity, plant height (cm), flag leaf area (cm-2), spike length (cm), grain yield (kg ha-1), biological yield (kg ha-1), 1000 grain weight (g), grains spike-1, grain weight spike-1(g), and harvest index (%). Analysis of variance revealed significant differences among genotypes for all the traits studied. Broad sense heritability was high for days to heading (0.89), grain weight spike-1(0.61g), spike length (0.70 cm), 1000-grain weight (0.62g), grain yield (0.78 kg ha-1) and harvest index (0.62%); and was moderate for days to maturity (0.52), plant height (0.38 cm), and grains spike-1 (0.49), while low heritability was estimated for spike weight (0.25g), flag leaf area (0.28 cm-2) and biological yield (0.25 kg ha-1). The values of genetic advance for days to heading, days to maturity, plant height, spike length, grains spike-1, grain weight spike-1, 1000-grain weight, grain yield, biological yield, flag leaf area, and harvest index were; 5.47, 1.88, 4.01, 6.42, 0.16, 5.02, 0.71, 418.83, 379.64, 2.89 and 3.92, respectively. Genotype PR 105 surpassed all other genotypes in grain yield (3144.33 kg ha-1) and hence it can be recommended for rainfed area. DOI: http://dx.doi.org/10.3126/ije.v4i2.12637 International Journal of Environment Vol.4(2) 2015: 193-205


2018 ◽  
Vol 44 (4) ◽  
pp. 529-535
Author(s):  
Ripon Kumar Roy ◽  
Ratna Rani Majumder ◽  
Shahanaz Sultana ◽  
ME Hoque ◽  
MS Ali

Analysis of variance revealed significant differences among the genotypes for all the traits. Flag leaf area (0.643**), productive tillers per plant (0.450**), 1000-grain weight (0.785**) and harvest index (0.920**) showed positive and strong significant association with grain yield per plant at genotypic level whereas plant height (–0.418*) and per cent spikelet sterility (–0.489**) possessed significant negative correlation with grain yield per plant. Flag leaf area (0.157) productive tillers per plant (0.481), 1000-grain weight (0.228), growth duration (0.080) and harvest index (0.544) exhibited direct effect on grain yield. Considering the correlation and path analysis flag leaf area, productive tiller per plant, 1000-grain weight and harvest index are important characters to be considered for yield improvement.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1760 ◽  
Author(s):  
Fathy M. A. El-Saadony ◽  
Yasser S. A. Mazrou ◽  
Ahmed E. A. Khalaf ◽  
Ahmed M. A. El-Sherif ◽  
Hany S. Osman ◽  
...  

Drought stress and nutrient status are highly important for plant growth and productivity. Two field experiments were conducted during two consecutive seasons (2017–2018 and 2018–2019) at El-Molak, Abo-Hammad, Sharkia, Egypt. This work was conducted under sandy soil conditions to evaluate the effects of foliar application with growth regulators (PGRs) such as cycocel (CCC), applied at 0, 500, or 1000 mg L−1, and/or salicylic acid (SA), applied at 0, 0.05, or 0.1 mM on the productivity as well as improving drought tolerance of three wheat cultivars, i.e., Gemmeiza 11, Misr 1, and Giza 171 under three irrigation intervals, i.e., 10, 15, and 20 days. Foliar spray was given at 35 and 50 days after planting (DAP). The obtained results showed that mean squares as a result of the main effect and first- and second-order interactions were significant (p ≤ 0.01) for all studied traits. The application of SA increased total chlorophyll content and flag leaf area (cm2) while the number of days to 50% heading was decreased; however, the number of spikes m−2, protein and proline contents were increased with the application of CCC. The cultivar Misr 1 outperformed the other cultivars in the most studied traits. Estimates of heritability in the broad sense (h2b) were, on average, higher in five physiological traits than other agronomic traits, and the highest estimate of h2b (95.1%) was shown by the number of days to 50% heading followed by protein content (91.90%). Among the interactions between irrigation and growth regulators, the I(10) × SA(0.1) recorded the highest flag leaf area (cm2), SPAD value, number of grains spike−1, 1000-grain weight (g), and grain yield (t ha−1). Among the interactions between irrigation and cultivars, the I(10) × Misr 1 recorded the highest flag leaf area (cm2), SPAD value, number of grains spike−1, and grain yield (t ha−1). Among the interactions among irrigation, growth regulators and cultivars, the I(10) × SA(0.1) × Misr 1 recorded the highest flag leaf area (cm2), number of grains spike−1, 1000-grain weight (g), and grain yield (t ha−1). Correlation coefficient between grain yield (t ha−1) and each of the number of days to 50% heading, flag leaf area, total chlorophyll content, number of spikes m−2, number of grains spike−1, and 1000-grain weight was positive and significant. Three main factors for the studied variables were created from the application of the factor analysis technique. Grain yield ha−1 (Y) can be predicted by the method of forwarding stepwise through applying the automatic linear regression analysis. Besides, the best prediction equation of grain yield ha−1 (Y) was formulated as: Ỷ = −14.36 + 0.11 number of grains spike−1 (NGS) + 0.09 1000-grain weight (THW) + 0.04 number of spike m−2 (NSm) + 0.03 days to 50% heading (DF) + 0.02 total chlorophyll content (TC) with adjusted-R2 (87.33%).


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
PUNIT KUMAR ◽  
VICHITRA KUMAR ARYA ◽  
PRADEEP KUMAR ◽  
LOKENDRA KUMAR ◽  
JOGENDRA SINGH

A study on genetic variability, heritability and genetic advance for seed yield and component traits was made in 40 genotypes of riceduring kharif 2011-2012 at SHIATS, Allahabad. The analysis of variance showed highly significant differences among the treatments for all the 13 traits under study.The genotypes namely CN 1446-5-8-17-1-MLD4 and CR 2706 recorded highest mean performance for panicles per hill and grain yield. The highest genotypic and phenotypic variances (VG and VP) were recorded for spikelets per panicle (3595.78 and 3642.41) followed by biological yield (355.72 and 360.62) and plant height (231.48 and 234.35).High heritability (broad sense) coupled with high genetic advance was observed for plant height, flag leaf length, panicles per hill, tillers per hill, days to maturity, spikelet’s per panicle, biological yield, harvest index, 1000 grain weight and grain yield, indicating that selection will be effective based on these traits because they were under the influence of additive and additive x additive type of gene action. Highest coefficient of variation (PCV and GCV) was recorded for tillers per hill (18.42% and 17.23%), panicle per hill (19.76 % and 18.68%), spikelet’s per panicle (34.30 and34.07 %), biological yield (28.31 % and 28.12 %), 1000 grain weight (15.57 % and 15 31 %) and grain yield (46.66% and 23.54 %), indicating that these traits are under the major influence of genetic control, therefore the above mentioned traits contributed maximum to higher grain yield compared to other traits, indicating grain yield improvement through the associated traits.


2018 ◽  
Vol 29 (3) ◽  
pp. 213-220
Author(s):  
S Kazi ◽  
SU Bhuiya ◽  
AK Hasan ◽  
RR Rajib ◽  
ABMR Rahman ◽  
...  

The experiment was at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh–2202 during late Rabi season (December-March) of 2015. It was two factorial experiment (1) irrigation level and (2) nitrogen rate. Irrigation significantly influenced on yield and yield contributing characters except harvest index. The highest plant height (79.69cm), maximum number of total tillers plant-1 (4.725), number of grains spike-1 (40.61), spike length (11.80cm), 1000 grain weight (28.67g), grain yield (3.227 t ha-1), harvest index (41.26%) were obtained by mulching treatment. Nitrogen rate significantly influenced the yield and yield contributing characters. The highest plant height (80.37cm), maximum number of total tillers plant-1 (5.124), number of grains spike-1 (40.85), spike length (10.37cm), 1000 grain weight (31.86g), grain yield (3.792 t ha-1), harvest index (41.69%) were obtained by the application of 180 kg N ha-1. The combined effect of Irrigation and nitrogen significantly interacted on yield and yield contributing characters. The highest plant height (83.44cm), number of total tillers plant-1 (5.66), number of grains spike-1 (41.60), 1000 grain weight (36.66g), grain yield (4.32 t ha-1) and harvest index (47.36%) were obtained by application of 180 kg N ha-1 with mulching. The present study revealed that high dose of nitrogen 180 kg ha-1 and mulching practice can compensate low production of wheat even at late sowing. Progressive Agriculture 29 (3): 213-220, 2018


Sign in / Sign up

Export Citation Format

Share Document