Characterisation of movement pattern and velocities of stallion spermatozoa depending on donor, season and cryopreservation

2003 ◽  
Vol 51 (3) ◽  
pp. 395-408 ◽  
Author(s):  
Christina Warnke ◽  
A. Tuchscherer ◽  
Hannelore Alm ◽  
W. Kanitz ◽  
S. Blottner ◽  
...  

The aim of the study was to compare different types of movement pattern and velocities of stallion spermatozoa depending on cryopreservation during breeding and non-breeding season. Ejaculates were collected from four stallions during May (n = 24) and December (n = 24). Parameters of sperm movement were evaluated by computer-aided sperm analysis (CASA) system, and included percentages of motile spermatozoa, different patterns of motility, the velocity, linearity (LIN), amplitude of lateral head displacement (ALH) and beat-cross frequency (BCF). In winter the average percentages of motility were slightly higher compared to the breeding season in May (70.8 ± 12.7% vs. 66.8 ± 12.2%, respectively). Cryopreservation and thawing led to a significant decrease in the number of motile sperm to 11.3 ± 5.8% in May and 15.6 ± 7.0% in December. The pattern of motility was also changed. Detailed analysis by CASA demonstrated that cryopreservation resulted in a shift from the proportions of linear to more non-linear motile spermatozoa and to a significant increase of local motile and hyperactivated spermatozoa. Mean velocity of fresh motile spermatozoa differed between May and December (119.1 ± 43.9 vs. 164.4 ± 66.4 µm/sec, respectively; P < 0.05). Cryopreservation and thawing led to a slight increase of curvilinear velocity (VCL) and straight line velocity (VSL). The motility analysis has shown that the parameters BCF and ALH were highly correlated in stallion spermatozoa (r = -0.67; P < 0.001). The BCF of stallion spermatozoa was slightly reduced in the non-breeding season. Altogether, the influence of factors on the motility of stallion spermatozoa has the following rank order: cryopreservation (P < 0.0001) ≯ stallion (P < 0.001) ≯ season (P < 0.05).

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
P. Perumal ◽  
S. K. Srivastava ◽  
S. K. Ghosh ◽  
K. K. Baruah

The present study was undertaken to assess the motility and velocity parameters of sperm of freezable and nonfreezable ejaculates by computer-assisted sperm analyser (CASA) such as Hamilton-Thorne Semen Analyser IVOS 11 in mithun semen. Fifty ejaculates (twenty-five ejaculates each for freezable and nonfreezable semen ejaculates) were collected from ten matured mithun bulls. CASA parameters, motility parameters such as forward progressive motility (FPM) (%), nonprogressive motility (NPM) (%), total motility (TM) (%), and static sperms (SM) (%); velocity parameters such as curvilinear velocity (VCL) (μm/sec), straight line velocity (VSL) (μm/sec), average path velocity (VAP) (μm/sec), linearity (LIN) (%), straightness (STR) (%), wobble (WOB) (%), amplitude of lateral head displacement (ALH) (μm), and beat/cross-frequency (BCF) (Hz) were measured by CASA analyser. The result revealed that these parameters varied significantly (P<0.05) between the freezable and nonfreezable ejaculates and freezable ejaculates have significantly (P<0.05) higher value than nonfreezable ejaculates. It was concluded that most of the CASA parameters were significantly lower in nonfreezable ejaculates than in freezable ejaculates in mithun and confirmed that the CASA was effective for a quick and objective analysis of motility and velocity parameters in mithun semen.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1993
Author(s):  
Sabrina Gacem ◽  
Jaime Catalán ◽  
Anthony Valverde ◽  
Carles Soler ◽  
Jordi Miró

In order to optimize the donkey sperm motility analysis by the CASA (Computer Assisted Sperm Analysis)-Mot system, twelve ejaculates were collected from six jackasses. Capillary loaded chamber (CLC), ISAS®D4C depths 10 and 20 µm, ISAS®D4C Leja 20 and drop displacement chamber (DDC), Spermtrack® (Spk) depths 10 and 20 µm were used. Sperm kinematic variables were evaluated using each chamber and a high-resolution camera capable of capturing a maximum of 500 frames/second (fps). The optimum frame rate (OFR) (defined according to curvilinear velocity—VCL) was dependent on chamber type. The highest OFR obtained was 278.46 fps by Spk20. Values for VCL, straight-line velocity (VSL), straightness (STR), amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) were high in DDC and 10 µm depth. In both DDC 10 and 20 µm, the sperm velocities (VCL, VSL, VAP) and ALH values decreased significantly from the centre to the edges, while Wobble and BCF increased. No defined behavior was observed along the CLC. However, all the kinematic variables had a higher value in a highly concentrated sample, in both chamber types. In conclusion, analyzing a minimum of nine fields at 250 fps from the centre to the edges in Spk10 chamber using a dilution of 30 × 106 sperm/mL offers the best choice for donkey computerised sperm motility analysis.


2020 ◽  
Vol 32 (2) ◽  
pp. 197
Author(s):  
M. Abbas ◽  
M. Irfan-ur-Rehman Khan ◽  
A. Rehman ◽  
N. Hameed ◽  
I. Mohsin ◽  
...  

In the subtropics, bucks show seasonal breeding patterns, and their semen quality decreases during the non-breeding season. Therefore, breeders tend to improve bucks’ semen quality before the breeding season for higher conception rates. In the current study, we hypothesised that simultaneous administration of equine chorionic gonadotrophin (ECG) and melatonin would improve fresh semen quality in bucks before the breeding season. Nine Beetal bucks were randomly assigned (n=3 per treatment) to three treatments: control, melatonin, and melatonin + ECG. Melatonin implants (18 mg; BTC Lab) were placed subcutaneously at the base of the ear. Bucks in the melatonin + ECG treatment were administered ECG (400 IU; Syncro-Part, Ceva Santé Animale) intramuscularly on every fourth day until the end of the experiment. Control bucks were administered normal saline (400 IU; Otuska Pakistan) intramuscularly on every fourth day. Semen was collected twice per week using an artificial vagina (42°C) and immediately evaluated for volume, color, pH, and contaminants. Sperm concentration, motility and kinematics (curvilinear velocity, straight-line velocity, average path velocity, and amplitude of lateral head displacement), viability, DNA, and acrosomal and mitochondrial integrity were monitored using a computer-assisted semen analyzer (AndroVision, Minitube). Weekly concentrations of plasma testosterone and melatonin of all bucks were analysed using radioimmunoassay (Immunotech, Beckman Coulter Ltd.) and enzyme-linked immunosorbent assay (450nm), respectively. Comparisons within and between treatments were made using generalised linear models (repeated-measures analysis of variance). Weekly single-point variance between the treatments was determined (analysis of variance) at P ≤ 0.05 (SPSS ver. 20.0; IBM Corp.). Semen quality (volume, pH, total motility (%), and concentration) improved after Week 4 in the melatonin + ECG treatment compared with the control and melatonin treatments (P&lt;0.05). Similarly, progressive motility (%), viability, DNA, acrosomal and mitochondrial integrity, and sperm kinematics (curvilinear velocity, straight-line velocity, average path velocity, and amplitude of lateral head displacement) improved (P&lt;0.05) after Week 4 in the melatonin + ECG treatment. Similarly, non-viability and ratio of abnormal spermatozoa decreased by Week 3 in the melatonin + ECG treatment (P&lt;0.05) compared with the control and melatonin treatments. Likewise, plasma testosterone concentration (ngmL−1) of bucks was higher (P&lt;0.05) at Week 3 in the melatonin + ECG treatment (4.2±0.2) than in the melatonin (0.8±0.1) and control (1.2±0.1) treatments. Within the melatonin + ECG treatment, plasma testosterone concentration was higher (P&lt;0.05) at Week 5 (4.9±0.2) and Week 9 (4.5±0.1) than at Week 3 (4.2±0.2). Plasma melatonin concentration (pgmL−1) increased (P&lt;0.05) from Week 5 onward in the melatonin + eCG (12.5±0.1) and melatonin (10.2±0.1) treatments compared with the control (2.65±0.1). In conclusion, the simultaneous administration of melatonin and ECG improved fresh semen quality in Beetal bucks.


Respuestas ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 16-27
Author(s):  
Leonardo Hernández-Corredor ◽  
Alexander Nivia-Osuna ◽  
Daniel Hernández-Villamizar ◽  
Jorge Alexander Rubio-Parada ◽  
Armando Quintero-Moreno

 El estudio evaluó la motilidad espermática y su efecto postdescongelación en semen caprino, en dos medios comerciales (Andromed® y TwoStep®) y diferentes protocolos de congelación (medio completo, con adicción del 10% de yema de huevo, semen centrifugado y sobrenadante seminal), se utilizaron machos de la raza alpina de la Universidad Francisco de Paula Santander Ocaña, el semen fue colectado con electroeyaculador, una vez los medios terminados y parte de los contenidos seminales enteros o centrifugados mezclados, se estabilizó por 2 horas, se envasó en pajillas de 0,5 cc y se congela en vapores de nitrógeno por 10 minutos, las pajillas se llevaron al laboratorio de Andrología de la Universidad del Zulia y por medio del sistema C.A.S.A.(Computer Assisted Sperm Análisis) se evaluaron los parámetros de motilidad como velocidad curvilínea (VCL), velocidad rectilínea (VSL), velocidad lineal (VAP), índice de linealidad (LIN), índice de rectitud (STR), índice de oscilación (ALH), Amplitud media del desplazamiento lateral de la cabeza del espermatozoide (BCF), los datos fueron analizados por medio del procedimiento GLM de SAS versión 9.0; los mejores índices de motilidad (VCL, ALH, BCF) fueron expresados enel tratamiento de contenido seminal centrifugado en medio Andromed®. (p≤0,001))La mejor progresividad espermática (VSL,LIN,STR)se presentó el tratamiento de Semen completo de caprino, criopreservado en medio comercial TwoStep®. ABSTRACT  The study evaluated the effect sperm motility and sperm post-thawing in goats, two commercial means (Andromed ® and Two Step ®) and different freezing protocols (complete medium with 10% addition of the egg yolk, semen centrifuged supernatant and seminal ), we used males of the Alpine race of the University Francisco de Paula Santander Ocaña, semen was collected with electroejaculator once finished media and part of the whole and centrifuged seminal contents mixed, stabilized by two hours, packed in 0.5 cc straws and frozen in nitrogen vapor for 10 min, the straws were taken to the laboratory of Andrology at the University of Zulia and through CASA system (Computer Assisted Sperm Analysis) were evaluated motility parameters such as curvilinear velocity (VCL), straight line velocity (VSL), linear velocity (VAP), linearity index (LIN), straightness index (STR) Oscillation Index (ALH ) average amplitude of the lateral displacement of the sperm head (BCF), the data were analyzed by the GLM procedure of SAS version 9.0, the highest rates of motility (VCL, ALH, BCF) were expressed in the treatment of seminal content centrifugation Andromed ® medium. (p ≤ 0.001)) The best progressive sperm (VSL, LIN, STR) will present the full Semen treatment goats, cryopreserved at Two Step ® commercial medium.Keywords: semen, buck, Andromed, Two step.


2021 ◽  
Vol 33 (2) ◽  
pp. 116
Author(s):  
Y. Pirosanto ◽  
A. Molina ◽  
M. Valera ◽  
J. Dorado ◽  
E. Terán ◽  
...  

Reproductive performance is one of the key factors in livestock production. It is well known that reproductive traits are influenced by several genetic factors, such as the increase of individual inbreeding levels, which are associated with changes in sperm motility and shape in several species. In horses, the increase in inbreeding is a common problem because of the reduction in effective population size and the increase in selection intensity observed in several breeds. However, studies assessing the effect of high levels of inbreeding on the sperm quality of stallions are scarce. In the present study, we aimed to determine the effect of increased inbreeding levels and age on the sperm motility patterns of Purebred Spanish horses (PRE). We performed kinetic characterisation of 557 sperm samples of 82 PRE stallions aged between 3 and16 years, using computer-assisted sperm analysis (Androvision™, Minitube). We evaluated 5 parameters in 6 different fields per sample: curved line velocity (VCL, µm/s), velocity average path (VAP, µm/s), velocity straight line (VSL, µm/s), amplitude of lateral head displacement (ALH, µm), and beat-cross frequency (BCF, Hz). We determined the pedigree-based inbreeding coefficient (Fped) based on ∼300,000 PRE pedigree records to evaluate the inbreeding effect. Individuals were separated into 2 groups: highly inbred (n=339) and lowly inbred (n=218) according to an F value of 12.5%. Differences between groups were analysed using a generalized linear model. The analysis did not show significant differences (P&gt;0.05) in the variables analysed with respect to the age of stallions. However, VAP, VCL, and AHL were lower in highly inbred than in lowly inbred animals (P&lt;0.05), suggesting less velocity and amplitude of head displacement. In the case of BCF, no significant differences (P&gt;0.05) were observed between the two study groups. In conclusion, age did not affect sperm quality parameters in the age group of stallions analysed. In addition, we demonstrated that high inbreeding coefficient reduced the mean velocity and trajectory pattern of spermatozoa in PRE.


2018 ◽  
Vol 29 (3) ◽  
pp. 485 ◽  
Author(s):  
Anthony Valverde-Abarca ◽  
Mónica Madrigal-Valverde ◽  
Marlen Camacho-Calvo ◽  
Adones Zambrana-Jiménez ◽  
Leonardo López

The assessment of the semen quality is an essential tool to improve the reproductive indexes in swine farms. The motility is the most important parameter that used in the sperm quality evaluation because it is associated with the energy of the spermatozoon. The aim of this research was to determine the influence of breed composition on reproductive variables of sperm quality, kinetics and semen motility in boars. During 2016, 240 ejaculates were collected from 63 boars with a mean age of 24.4±10.9 months. Six racial groups were identified: Duroc (D), Yorkshire (Y), Landrace (L), F1 Pietrain*Duroc (PD) and two genetic lines (LA and LB). The breeds with the highest ejaculate volume presented a higher total number of spermatozoa (P<0.05). The effect of the breed was significant (P<0.05) on sperm kinetics variables except for amplitude of lateral head displacement (ALH, μm). The Landrace breed presented the highest (P<0.05) percentage of static sperm (29.30±1.57). The most relevant differences (P<0.05) for total motility (MTOT) and progressive motility (MP), were presented between L and PD with values of 70.71±1.57; 77.48±1.09 and 51.80±1.97; 59.85±1.37% respectively. Adult boars (≥18 months) had higher volumes of ejaculate and total number of sperm than boars in the intermediate and young ages, however, for velocities (μm/s): curvilinear (VCL), straight line (VSL) and average path (VAP), adult boars only were different (P<0.05) of the boars in-between ages. Four sperm subpopulations (SP) were identified, SP1 (46.83%) characterized by a moderate speed, but of very progressive motility, SP2 (14.78%) with active movement, but not progressive, SP3 (8.45%) with low speeds and progressive path and SP4 (29.94%) with quick movement, but without progressivity.


2013 ◽  
Vol 25 (1) ◽  
pp. 183 ◽  
Author(s):  
I. Ortiz ◽  
J. Dorado ◽  
D. Acha ◽  
L. Ramirez ◽  
M. Urbano ◽  
...  

Single-layer centrifugation (SLC) with EquipureTM Bottom Layer has been used to enhance the quality of stallion semen samples; however, no studies have been performed on donkeys. The aim of this study was to determine if SLC with EquipureTM Bottom Layer improves kinematic parameters on frozen–thawed donkey sperm. Semen was collected from 4 Andalusian donkeys by artificial vagina. Three ejaculates from each donkey were centrifuged with EquiproTM, supernatant was removed, and pellet was re-extended in the freezing medium GentTM to a final concentration of 200 × 106 spermatozoa per milliliter. Sperm were slowly cooled to 5°C for 2 h, loaded in 0.5-mL plastic straws, and frozen in liquid-nitrogen vapors. After at least one week of storage, straws were thawed in a water bath at 37°C for 30 s. After thawing, semen samples were divided in 2 aliquots: aliquot 1 was used as such (control) and aliquot 2 was processed by SLC using EquipureTM Bottom Layer. Computer-assisted sperm analysis was performed, and sperm kinematics total motility (%), progressive motility (%), curvilinear velocity (VCL; µm s–1), velocity straight line (VSL; µm s–1), velocity average path (VAP; µm s–1), linearity (LIN; %), straightness (STR; %), wobble (WOB; %), lateral head displacement (ALH; µm), and beat cross frequency (BCF; Hz) were statistically compared using GLM model between frozen–thawed semen samples processed or not with EquipureTM. Results were expressed as mean ± standard error. Significant differences (P < 0.05) were found between SLC-selected and unselected semen for total motility (77.44 ± 5.83 v. 58.89 ± 6.07), progressive motility (76.88 ± 4.52 v. 56.59 ± 5.44), VCL (137.50 ± 0.75 v. 133.0 ± 0.99), LIN (69.43 ± 0.31 v. 68.23 ± 0.41), STR (78.45 ± 0.29 v. 76.90 ± 0.37), WOB (85.06 ± 0.18 v. 83.91 ± 0.26), ALH (2.76 ± 0.01 v. 2.44 ± 0.01), and BCF (9.13 ± 0.05 v. 8.53 ± 0.06), respectively. No significant differences were observed for VSL (102.89 ± 0.70 v. 104.32 ± 0.95) and VAP (123.21 ± 0.71 v. 121.50 ± 0.98). Most of the computer-assisted sperm analysis parameters used in the present study have been previously identified as reliable markers of sperm motility in relation to sperm quality and fertility. It has also been reported that VCL appears to be critical for the formation of the sperm reservoir and penetration of the zona pellucida. In addition, other variables improved in the SLC-selected samples have been described as measure of progressivity (LIN, STR) and spermatozoa vigor (BCF, ALH). These preliminary results suggest an additional option for improving sperm quality in donkey semen doses. In conclusion, SLC with EquipureTM can be used to enhance kinematic parameters on frozen–thawed donkey sperm.


2016 ◽  
Vol 50 (1) ◽  
Author(s):  
J. B. Patel ◽  
A. J. Dhami

Sixty semen ejaculates from 10 mature bulls, 5 each of Jafarabadi and Mehsana breed, were studied for sperm motility and velocity parameters of fresh and frozen-thawed spermatozoa using computer assisted sperm analyzer (CASA). The mean values of motile and progressively motile spermatozoa observed in fresh semen of Jafarabadi and Mehsana bulls (79.77±1.62 and 61.80±1.85, and 78.90±1.22 and 61.37±1.58%) were highly significantly (P<0.01) reduced (51.20±1.57 and 33.20±1.45, and 52.10±1.70 and 34.30±1.54 %, respectively) in post-thawed semen. The average path velocity, straight line velocity and curvilinear velocity (μm/sec) of spermatozoa of Jafarabadi and Mehsana bulls noted in fresh semen were also reduced highly significantly (P<0.01) in frozen-thawed semen. Among the other velocity parameters, amplitude of lateral head displacement (μm), elongation (%) and medium motile sperm (%) increased, while beat-cross frequency (Hz), straightness (%), linearity (%), sperm area (μm<sup>2</sup>) and rapidly motile sperm (%) decreased significantly in post-thawed sperms when compared with the fresh sperm of both Jafarabadi and Mehsana bulls. The initial motility and live sperm per cent were significantly correlated with CASA traits of fresh and frozen-thawed semen, and all the sperm motility and velocity traits of fresh and frozen-thawed semen assessed by CASA were significantly interrelated among both the breeds. The interrelationships were stronger in Mehsana bulls as compared to Jafarabadi bulls.


2020 ◽  
Vol 72 (2) ◽  
pp. 295-304
Author(s):  
E.C.B. Silva ◽  
J.I.T. Vieira ◽  
I.H.A.V. Nery ◽  
R.A.J. Araújo Silva ◽  
V.F.M.H. Lima ◽  
...  

ABSTRACT The objectives of this study were to evaluate goat sperm sorting in continuous Percoll® density gradients and gamete freezability, in the presence or absence of phenolic antioxidants. For this, semen pools were sorted, frozen, and evaluated. The non-selected group (NSg) presented lower progressive motility (PM), linearity (LIN), straightness (STR), and wobble (WOB) than the selected groups, and straight line velocity (VSL) compared to those with catechin or resveratrol. The amplitude of lateral head displacement (ALH) was higher in NSg, and quercetin reduced the mitochondrial membrane potential (MMP). After thawing, the NSg presented lower PM than the selected groups, VSL and VAP (average path velocity) than the selected group with or without catechin, LIN and WOB than the selected with or without catechin or resveratrol, and STR than the selected with catechin. Moreover, NSg presented higher ALH and BCF than the samples selected with or without catechin. Plasma membrane integrity and intact and living cells were higher in the selected groups, and MMP was lower in the NSg and the selected group with quercetin. Thus, centrifugation in Percoll® continuous density gradients is a viable methodology to select goat sperm compatible with the freezing, especially in the presence of catechin or resveratrol.


2019 ◽  
Vol 31 (1) ◽  
pp. 142
Author(s):  
M. A. Lagares ◽  
N. C. Alves ◽  
A. L. A. Guimaraes ◽  
S. B. Luz ◽  
S. A. Diniz ◽  
...  

The pattern of sperm transport and survival in the mare’s reproductive tract is different between fresh and frozen-thawed semen. A probable reason for this difference is the biophysiological changes in sperm during cryopreservation of equine semen. These changes can impair motility of stallion sperm after thawing. The aim of the present work was to test the effect of different caffeine concentrations on stallion sperm motility after thawing. One ejaculate of 9 stallions was frozen with the INRA82 frozen extender, and after thawing, different caffeine concentrations were added to the semen samples according to the treatments: control INRA82 without caffeine addition (T1), T1+1mM caffeine (T2), T1+2mM caffeine (T3), T1+3mM caffeine (T4), T1+5mM caffeine (T5), T1+7.5mM caffeine (T6), and T1+10mM caffeine (T7). The analysis of sperm motility parameters was performed with a computer-assisted semen analyser in 4 time periods: immediately after semen samples thawing (t0) and 15min (t15), 30min (t30), and 40min (t40) after semen sample thawing. One semen sample of each treatment was thawed, and an aliquot was analysed for the following computer-assisted semen analysis characteristics: velocity curvilinear (VCL; µm s−1), velocity straight line (µm s−1), velocity average path (µm s−1), linearity (%), straightness (%), wobble (%), amplitude of lateral head displacement (µm), beat cross frequency (BCF; Hz), and percentage of total sperm motility (TM) and progressive sperm motility. The statistical analysis was performed with ANOVA and Duncan’s test. The sperm parameters progressive sperm motility, linearity, wobble, and amplitude of lateral head displacement did not differ among the treatments (P&gt;0.05). Immediately after addition (t0) of 5, 7.5, and 10mM caffeine concentrations, an increase of TM was observed (T5: 53.1%; T6: 45.9%; and T7: 47.4%) compared with the other treatments (T1: 37.5%; T2: 36.0%; T3: 36.6%; and T4: 32.3%; P&lt;0.05). Although after 15min of incubation (t15) the TM decreased compared with t0 in T5, T6, and T7 treatments, the percentage was comparable with the other treatments at t15, t30, and t40. The mean value for TM was higher with 5mM caffeine compared with the control group (38.6% v. 34.7%; P&lt;0.05), whereas for the 10mM caffeine treatment velocity straight line (19.9v. 17.1µm s−1), velocity average path (25.6v. 22.9µm s−1), and straightness (75.4v. 72.3%) were higher than the control (P&lt;0.05). For the 5, 7.5, and 10mM caffeine treatments, VCL and BCF were higher than the control (VCL: 33.9, 34.5, 36.8, and 31.5µm s−1, respectively; BCF: 8.1, 8.6, 9.0, and 7.2Hz, respectively). The remaining motility parameters did not differ until 40min after the treatment (P&lt;0.05). In conclusion, the addition of 5, 7.5, and 10mM caffeine concentrations after semen thawing increased TM and most of the sperm motility characteristics. However, given the complexities of sperm transport, capacitation, and so on, further experiments are needed to test whether caffeine treatments could be used to improve the fertilization rate of frozen-thawed equine semen.


Sign in / Sign up

Export Citation Format

Share Document