Effects of ochratoxin a on some production traits, lipid peroxide and glutathione redox status of weaned piglets

2007 ◽  
Vol 55 (4) ◽  
pp. 463-470 ◽  
Author(s):  
K. Balogh ◽  
J. Hausenblasz ◽  
Mária Weber ◽  
Márta Erdélyi ◽  
Judit Fodor ◽  
...  

The effect of feeding ochratoxin A (OTA) contaminated diet (379.6 and 338.1 μg/kg in starter and grower diets) on production traits, lipid peroxidation and some parameters of the glutathione redox system were investigated in weaned piglets over a seven-week period. Feed intake and feed conversion ratio (FCR) did not differ significantly, but in the first phase (0–28 days) the daily weight gain was significantly lower in the piglets fed the OTA-contaminated diet. Lipid peroxidation, as measured by the amount of malondialdehyde, glutathione content and glutathione peroxidase activity, did not change significantly in the blood plasma and red blood cell haemolysate in the OTA-loaded group, while malondialdehyde content increased significantly in the liver and markedly but not significantly in the kidney of piglets fed OTA-contaminated feed. Glutathione content did not differ significantly in the studied organs of the two groups while glutathione peroxidase activity of the OTA-loaded animals was significantly lower both in the liver and in the kidney. The results suggest that the use of feed-stuffs contaminated with low levels of OTA for seven weeks did not cause marked differences in the production traits or in lipid peroxidation and amount or activity of the glutathione redox system in the blood plasma, red blood cells and kidney, while significant changes occurred in the liver homogenate.

2004 ◽  
Vol 52 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Katalin Németh ◽  
M. Mézes ◽  
T. Gaál ◽  
Á. Bartos ◽  
K. Balogh ◽  
...  

The effect of supplementary methionine and fats of different saturation levels on the glutathione redox system of growing broiler cockerels was studied. The diet of three groups of chicks was supplemented with corn germ oil, beef tallow and fish oil at the levels of 30 g/kg and 50 g/kg of feed, respectively. The diet of further three groups was supplemented with methionine (5 g/kg of feed) in addition to the different fat sources. Control chicks were fed with a compound feed without methionine and fat supplementation. Reduced glutathione (GSH) and glutathione disulphide (GSSG) content as well as glutathione peroxidase activity in the liver were determined and GSH/GSSG ratio was calculated at day old and then at one and three weeks of age. Our results indicate that supplementary methionine stimulates both the synthesis of the glutathione redox system and glutathione peroxidase activity in growing chickens in the first period of postnatal life, when the risk of lipid peroxidation is high due to feeding unsaturated fats in the diet.


2019 ◽  
Vol 36 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Csaba Fernye ◽  
Zsolt Ancsin ◽  
Márta Erdélyi ◽  
Miklós Mézes ◽  
Krisztián Balogh

AbstractThere are only a few reports on the effects of mycotoxins on pheasant (Phasianus colchicus) and the susceptibility to deoxynivalenol of these birds have never been reported before. The present experiment focuses to investigate the effects of different dietary concentrations of deoxynivalenol on blood plasma protein content, some parameters of lipid peroxidation and glutathione redox system and on the performance of pheasant chicks. A total of 320 1-day-old female pheasants were randomly assigned to four treatment groups fed with a diet contaminated with deoxynivalenol (control, 5.11 mg/kg, 11.68 mg/kg and 16.89 mg/kg). Birds were sacrificed at early (12, 24 and 72 h) and late (1, 2 and 3 weeks) stages of the experiment to demonstrate the oxidative stress-inducing effect of deoxynivalenol. Feed refusal was dose dependent, especially in the last third of the trial, but only minor body weight gain decrease was found. Lipid-peroxidation parameters did not show dose-dependent effect, except in blood plasma during the early stage of the trial. The glutathione redox system, reduced glutathione content and glutathione peroxidase activity, was activated in the liver, but primarily in the blood plasma. Glutathione peroxidase activity has changed parallel with reduced glutathione concentration in all tissues. Comparing our results with literature data, pheasants seem to have the same or higher tolerance to deoxynivalenol than other avian species, and glutathione redox system might contribute in some extent to this tolerance, as effective antioxidant defence against oxidative stress.


Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 201 ◽  
Author(s):  
Balogh ◽  
Kövesi ◽  
Zándoki ◽  
Kulcsár ◽  
Ancsin ◽  
...  

Authors studied the effect of sterigmatocystin from infected corn (STC), purified sterigmatocystin (PSTC), and aflatoxin B1 from infected corn (AFB1) on lipid peroxidation and glutathione redox parameters, including the expression of their encoding genes in a sub-chronic (14 days) trial. A total of 144 three-week-old cockerels was divided into four experimental groups (n = 36 in each). Control feed was contaminated with STC or PSTC (1590 µg STC/kg or 1570.5 µg STC/kg feed), or with AFB1 (149.1 µg AFB1/kg feed). Six birds from each group were sampled at day 1, 2, 3, 7 and 14 of mycotoxin exposure. As parameters of lipid peroxidation, conjugated dienes (CD) and trienes (CT) were measured in the liver, while malondialdehyde (MDA) concentration was determined in blood plasma, red blood cell hemolysate and liver. Reduced glutathione (GSH) concentration and glutathione peroxidase (GPx) activity were determined in the same samples, and expression of glutathione peroxidase 4 (GPX4), glutathione synthetase (GSS) and glutathione reductase (GSR) genes was measured by RT-PCR in the liver. STC, PSTC or AFB1 caused a slight, but not significant, increase in CD and CT levels; however, in the case of MDA, no increase was found in the liver. Glutathione redox system was activated in the liver by AFB1, but less markedly by STC/PSTC. PSTC and AFB1 resulted in a higher expression of GPX4, while GSS expression was down-regulated by AFB1 on day 1, but up-regulated by STC on day 2 and by both mycotoxins on day 7. However, on day 14, GSS expression was down-regulated by PSTC. Expression of GSR was low on day 1 in AFB1 and PSTC groups, but later it was up-regulated by AFB1. The observed changes regarding gene expression strengthen the hypothesis that the mild oxidative stress, caused by the applied STC doses, activates the glutathione redox system of broiler chickens.


2018 ◽  
Vol 66 (1) ◽  
pp. 28-39 ◽  
Author(s):  
Mangesh Nakade ◽  
Csilla Pelyhe ◽  
Benjámin Kövesi ◽  
Krisztián Balogh ◽  
Balázs Kovács ◽  
...  

Short-term (48-hour) effects of 3.74/1.26 mg kg−1 T-2/HT-2 toxin or 16.12 mg kg−1 DON in feed were investigated in the liver of three-week-old cockerels (body weight: 749.60 ± 90.98 g). Markers of lipid peroxidation showed no significant changes. At hour 24, glutathione content in the T-2/HT-2 toxin group was significantly higher than in the control. Glutathione peroxidase activity was significantly higher than the control at hour 24 in the T-2/H-2 toxin group and at hour 48 in the DON group. In the DON group, expression of the glutathione peroxidase 4 gene (GPX4) was significantly lower than in the control at hours 12 and 14, and higher at hour 48. Expression of the glutathione reductase gene (GSR) was significantly lower than in the control at hour 12 in the T-2/HT-2 toxin group, and at hours 12, 24 and 48 in the DON group. However, at hour 36 higher GSR expression was measured in the DON group. Due to the effect of both trichothecenes, expression of the glutathione synthetase gene (GSS) was significantly lower than in the control at hours 24 and 48. In conclusion, T-2/HT-2 toxin and DON had a moderate short-term effect on free radical formation. T-2/HT-2 toxin induced more pronounced activation of the glutathione redox system than did DON.


2020 ◽  
Vol 46 (6) ◽  
pp. 1921-1932
Author(s):  
Benjámin Kövesi ◽  
Szabina Kulcsár ◽  
Erika Zándoki ◽  
Judit Szabó-Fodor ◽  
Miklós Mézes ◽  
...  

Abstract The effects of a single oral dose of 1.82 mg kg−1 bw of T-2 and HT-2 toxin (T-2), 1.75 mg kg−1 bw deoxynivalenol (DON) and 15-acetyl DON, 1.96 mg kg−1 bw fumonisin B1 (FB1) or 1.85 mg kg−1 bw ochratoxin A (OTA) were investigated in common carp juveniles on lipid peroxidation, the parameters of the glutathione redox system including the expression of their encoding genes in a short-term (24 h) experiment. Markers of the initiation phase of lipid peroxidation, conjugated dienes, and trienes, were slightly affected by DON and OTA treatment at 16-h sampling. The termination marker, malondialdehyde, concentration increased only as an effect of FB1. Glutathione content and glutathione peroxidase activity showed significantly higher levels in the T-2 and FB1 groups at 8 h, and in the DON and FB1 groups at 16 h. The expression of glutathione peroxidase genes (gpx4a, gpx4b) showed a dual response. Downregulation of gpxa was observed at 8 h, as the effect of DON, FB1, and OTA, but an upregulation in the T-2 group. At 16 h gpx4a upregulated as an effect of DON, T-2, and FB1, and at 24 h in the DON and T-2 groups. Expression of gpx4b downregulated at 8 h, except in the T-2 group, and upregulation observed as an effect of T-2 at 24 h. The lack of an increase in the expression of nrf2, except as the effect of DON at 8 h, and a decrease in the keap1 expression suggests that the antioxidant defence system was activated at gene and protein levels through Keap1–Nrf2 independent pathways.


Sign in / Sign up

Export Citation Format

Share Document