scholarly journals PENGARUH PENUND AAN TAHAP PENUMPATAN DENGAN RESIN KOMPOSIT PADA TEKNIK SANDWICH TERHADAP KEKUATAN TARIK PELEKATAN SEMEN IONOMER KACA DAN RESIN KOMPOSIT

2016 ◽  
Vol 1 (1) ◽  
pp. 46
Author(s):  
Yulita Kristanti ◽  
Diatri Nari Ratih

Sandwich technique, a combination filling technique using composite resin filling material and glass ionomer cement has been widely used. In fact, such a combination filling technique need  ffcf i longer time compare to filling without combination. This research was done in order to know the influence of delayed fill ; ing in sandwich technique using composite resin related to the tensile strength between glass ionomer cement and composite resin.The materials studied consist of 16 samples, that were divided into 4 groups. The first one was used as the control groupt without delaying), while group II-IVwas used as the treating groups. Each group consist of 4 samples. The difference treatment between group II-IVwas the soaking time in the artificial saliva. Group II was soaked into artificial saliva (pH5)for 1 day, group , HI for 7 days, and group IVfor 14 days. The result of this research shows that the diference among the groups involved were very significant, except between group I and group II.The longer the sample was soaked into the artificial saliva, the tensile strength tends to decrease.

2006 ◽  
Vol 20 (2) ◽  
pp. 91-96 ◽  
Author(s):  
Mônica Tostes Amaral ◽  
Antônio Carlos Guedes-Pinto ◽  
Orlando Chevitarese

This work evaluated the remineralization of demineralized enamel of pits and fissures of human third molars sealed with a glass ionomer cement (Fuji IX, GC Corporation - Japan) or with a Bis-GMA sealant (Delton - Dentsply). Ten volunteers participated in this in situ study that consisted of two thirty-day periods using intra-oral devices, with a week’s interval in between. Four experimental treatment procedures and one control were randomly assigned to the volunteers’ specimens: Group I, no treatment, control; Group II, artificial caries process; Group III, same treatment as Group II, but sealed with Delton (Dentsply); Group IV, same treatment as Group II, but sealed with Fuji IX (GC Corporation - Japan); Group V, same treatment as Group II and no sealing. Groups I and II were not submitted to the oral environment and served as controls. After a period of 30 days in the oral environment, the specimens were removed from the devices, embedded in acrylic resin, ground flat and polished. Then, Knoop hardness tests were performed, with a 25 g static load applied for 15 seconds. The measurements were made from the base of the fissure up to an opening of 600 µm, pre-established between the inclines of the cusps. Three indentations were then made, located at 25, 75, and 125 µm in depth from the outer enamel margin and 100 µm apart from each other (Micromet 2003). The Brieger F and Bonferroni’s tests were applied to the measurements. It was concluded that sealing with the glass ionomer cement Fuji IX was capable of making the enamel of pits and fissures more resistant by increasing the value of Knoop hardness.


2020 ◽  
Vol 28 (6) ◽  
pp. 587-592
Author(s):  
Navara Tanweer ◽  
Rizwan Jouhar ◽  
Muhammad Adeel Ahmed

BACKGROUND: Numerous researchers have attempted to improve the mechanical properties of glass ionomer cement since 1972. In this study, ultrasonic curing treatment was introduced during the mixing of glass ionomer cement (GC Fuji IX) to facilitate intimate mixing, compaction and adaptation of residual glass particle which consequently improves densification of the material. OBJECTIVE: To assess the influence of ultrasonic treatment on the microhardness of glass ionomer cement (GC Fuji IX) and compare it with the conventionally cured method. METHODS: A total of 40 specimens (2 × 2 mm) were fabricated and equally divided into two groups: Group I (conventional curing method) and Group II (ultrasonically cured). For Group II, an ultrasonic scaler was used which provides energy to ensure proper mixing of material without leaving any air bubbles or unmixed particles. Vicker’s hardness test was employed to generate the average microhardness values by making three indentations at different points on each specimen. Statistical Package for Social Sciences (SPSS) Version 17 was used, employing independent samples T test to compare the difference in microhardness values between two curing groups. RESULTS: The average surface hardness value for conventional cured GIC was 62.21 ± 13.61 while ultrasonically cured GIC exhibited a higher mean microhardness value of 66.37 ± 12.83. Additionally, the average microhardness values produced by the two groups showed statistically significant differences (p value < 0.035). CONCLUSION: Ultrasonic excitation treatment leads to intimate mixing and accelerated hardening of glass ionomer cement thereby enhancing its microhardness and reducing early weakness.


2011 ◽  
Vol 264-265 ◽  
pp. 508-512
Author(s):  
Ammar A. Mustafa ◽  
Khalid A. S. Al-Khateeb ◽  
Ahmad Faris Ismail

Experimental glass ionomer cement was prepared for the purpose of this study. Twenty disk specimens (16mm diameter x 10mm height) of test-GIC were prepared for the diametral tensile strength (DTS) test and twenty cylindrical specimens (6 mm diameter x 16mm height) were prepared for the compressive strength (CS) test. Specimens were stored in an artificial saliva at 37º C and (50±10%) of relative humidity in an incubator until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours, 7 days and 28 days. The specimens were tested in a Universal Testing Machine (Instron 1122, Instron corp., High Wycombe, U.K.) at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The results have revealed that incorporation of lithium fluoride in the formula of the test GIC might impart an increase in the mechanical properties of the GICs


2015 ◽  
Vol 3 (2) ◽  
pp. 83-91
Author(s):  
Thesi Kurnia Ayudia ◽  
Kuswardani Susari Putri ◽  
Ivony Fitria

Microleakage defined as the clinically undetectable passage of bacteria, fluids, molecules or ions between a cavity wall and the restorative material. Microleakage tends to occur in Class V cavities. It is caused by  marginal adaptation  which is more difficult in class  V cavities. Microfiller composite resin is developed and indicated for areas that not require a large pressure. As the development of dental materials, it has been developed a composite resin base material that is known as resin-modified glass ionomer cement. This material has purposed to reduce the limitation of conventional glass ionomer cement and take the advantage of the composite resin material. The aim of this study was   to evaluate microleakage difference of microfiler composite resin restoration with resin-modified glass ionomer cement restorations in class V anterior teeth cavities.  The methode of this  study used experimental laboratory through in vitro process . Thirty two class V cavities were prepared on labial surfaces of extracted human anterior teeth. Samples were divided into two groups. Group I included sixteen samples that have had   restorated with microfiller composite. Group II included sixteen samples that have had restorated with resin-modified glass ionomer cement. The samples were immersed into aquabides solution for 24 hours. After that, the samples were immersed into 1% methylene blue solution for 24 hours. All samples sectioned longitudinally and analyzed for microleakage as dye penetration using a stereomicroscope. Student t-test were used for statistical analysis. The resulting data showed no significantly difference between two groups. Key Word : Microleakage, microfiller composite resin, resin-modified glass ionomer cement (RMGIC), class V cavities.


2021 ◽  
Vol 13 ◽  
pp. 30-36
Author(s):  
Dr. Sara Elizabeth Paul ◽  
Dr. Divya Reddy ◽  
Dr. Santhosh T Paul ◽  
Dr. Shuhaib A Rahman

Aim: The aim of the present study was to investigate the erosive potential of pediatric liquid analgesics and their effect on primary enamel, glass ionomer and composite resin restorations. Methods: Selected medications were analysed in triplicates with regard to pH and titratable acidity. Eighteen specimens each of glass ionomer, composite resin and primary enamel were prepared and stored in 100% relative humidity at 37ºC for 7 days. After baseline surface roughness analysis using 3D optical profilometer, specimens were randomly distributed according to immersion media into three groups (n=6) as follows: Group 1- Calpol® ( Paracetamol), Group 2–Ibugesic® (Ibuprofen) and Group 3 –Artificial saliva (control). The specimens were subjected to immersion cycles for 5 days following which surface roughness was measured. Data were analysed using analysis of variance (ANOVA) and Tukey’s test. Results: Ibugesic ® showed the lowest titratable acidity and mean pH when compared to Calpol®. The glass ionomer cement exhibited highest surface roughness followed by primary enamel and composite resin both at baseline and after immersion. The highest mean surface roughness change for glass ionomer cement was observed when exposed to Ibugesic® (0.04 ± 0.13) when compared to Calpol® (0.006 ± 0.01) and artificial saliva (0.035 ± 0.05). Conclusions: Although minimal, the restorative materials and primary enamel subjected to acidic medicines showed surface roughness changes and among the pediatric liquid analgesics tested, Ibugesic® was observed to be highly erosive with lower pH and high titratable acidity


2012 ◽  
Vol 37 (1) ◽  
pp. 98-106 ◽  
Author(s):  
L Kqiku ◽  
KA Ebeleseder ◽  
K Glockner

Clinical Relevance MTA combined with glass ionomer cement and composite resin in a “sandwich technique” showed a favourable clinical outcome for treatment of invasive cervical resorption lesions.


2016 ◽  
Vol 4 (2) ◽  
pp. 98-105
Author(s):  
Farid Yuristiawan ◽  
Gunawan Gunawan ◽  
Detty Iryani

Glass ionomer cement is one of the filling material that often used on the field of dentistry because it is relatively less expensive and mostly available. It’s existence in the mouth makes it susceptible to any substance that comes into mouth one of them is mouthwash which is a solution that used for many purposes such as antiseptic, astrigent, to prevent caries and bad breath. The aim of this research is to know the comparison of surface hardness of glass ionomer cement which soaked in alcohol containing mouthwash and alcohol-free mouthwash. This research is a laboratoric experimental type study. Sampels made from GC FUJI IX GP EXTRA for as much as 30 sampels were made and then soaked in artificial saliva  for the first 24 hours inside incubator which temperature and humidity were controlled. Sampels then divided into 3 groups. First group will be soaked in alcohol containing mouthwash, second group will be soaked alcohol-free mouthwash and control group will be soaked in artificial saliva for 6 hours inside incubator. Listerine is the mouthwash that was used on this research and surface hardness was examined using Vickers Hardness Tester. The result of this research  shows mean value for surface hardness of the first group is 16.36 VHN, 24.04 VHN for second group, and 43.60 VHN for control group. The result one way ANOVA with post hoc Bonferroni comparing test show significant results p = 0.00. In Conclusion there are significant differences of surface hardness between each groups, which surface hardness of the first group is lower than the second group, and both surface hardness of  the first and second group are lowered than control group (p = 0.00). Key words : Glass Ionomer Cement, Mouthwash, Surface Hardness


Sign in / Sign up

Export Citation Format

Share Document