experimental glass
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (22) ◽  
pp. 11027
Author(s):  
Maja Bilić-Prcić ◽  
Ivan Šalinović ◽  
Sevil Gurgan ◽  
Uzay Koc Vural ◽  
Silvana Jukić Krmek ◽  
...  

Background: The aim of this study was to evaluate the effects of incorporation of hydroxyapatite (HA) derived from cuttlefish bone on the microhardness, surface roughness (SR), and fluoride release (FR) of conventional cure, and resin-modified glass-ionomer cement. Methods: There were four groups for each tested material; experimental glass-ionomer were made by addition and of 2, 5, and 10 wt % HA respectively to conventional glass-ionomers Fuji II LC and Fuji IX GP Extra. One group was prepared without the addition of HA particles. For SR and microhardness measurements sectional Teflon molds (5 mm in diameter and 2 mm deep) were used to prepare 10 samples per group (n = 80). The samples were stored in distilled water at 37 °C for 7 days prior to testing. The SR was measured using a contact type profilometer and the microhardness was determined using a Vickers micro-hardness tester at a load of 980 g for 15 s. For FR measurements, there were six samples per group (n = 48), prepared in Teflon molds (8 mm in diameter and 2 mm deep). The FR was measured with an ionoselective electrode in triplicates after 24 h, 7 days, and 45 days. Statistical analysis was performed using one-way ANOVA with Tukey post-hoc test. Results and Conclusion: Microhardness values obtained for Fuji II modified with 10 wt % HA were significantly higher compared to the other two groups tested. Comparison of materials with respect to SR showed significant difference between them (p < 0.0001) with Fuji II and Fuji IX modified with HA having higher SR values. Regarding FR, Fuji IX showed statistically significant higher results than Fuji II, independently of HA modification, and groups modified with 2 and 5 wt % HA showed significantly increased fluoride release in all three time points.


Author(s):  
V. Onischuk ◽  
Y. Lazarova ◽  
E. Evtushenko

The article presents the results of the evaluation of the study of the possibility of using ash and slag waste (ash) of Reftinskaya GRES as a component of the charge used in the production of continuous glass fiber of high-modulus (type E), dielectric resistant (type S) and high-strength, chemically stable basalt (type B) compositions. Since the chemical composition of ash is multicomponent and significantly differs from the compositions of raw materials traditionally used in the production of glass fiber, in order to establish the technological features of its use as a component of the charge, experimental compositions of glasses were designed to achieve their specified physical and mechanical properties, with the maximum possible content of ash in the composition of glass charges. A priori assessment showed that acceptable properties of glass for glass fiber compositions E, S and B can be obtained at the content of 36%, 68% and 64% ash in the charges, respectively, for the listed types of glass. The determination of the glass transition temperature intervals of the experimental charge compositions showed that an increase in the ash content in them increases the temperature that ensures the production of a high-quality melt. Studies of the tendency of experimental glass compositions to crystallization, which prevents the effective process of fiber formation, allowed us to determine that almost all compositions have a reduced tendency to crystallization, therefore, they can be used in the production of glass fibers of types S, E and B.


Author(s):  
Tiago Moreira Bastos Campos ◽  
Renata Marques de Melo Marinho ◽  
Amanda de Oliveira Pinto Ribeiro ◽  
Thais Larissa do Amaral Montanheiro ◽  
Ana Carolina da Silva ◽  
...  

2020 ◽  
Vol 31 (4) ◽  
pp. 445-452
Author(s):  
Piyaphong Panpisut ◽  
Naruporn Monmaturapoj ◽  
Autcharaporn Srion ◽  
Arnit Toneluck ◽  
Prathip Phantumvanit

Abstract The aim of this study was to assess the effect of different commercial liquid phases (Ketac, Riva, and Fuji IX) and the use of spherical pre-reacted glass (SPG) fillers on cement maturation, fluoride release, compressive (CS) and biaxial flexural strength (BFS) of experimental glass ionomer cements (GICs). The experimental GICs (Ketac_M, Riva_M, FujiIX_M) were prepared by mixing SPG fillers with commercial liquid phases using the powder to liquid mass ratio of 2.5:1. FTIR-ATR was used to assess the maturation of GICs. Diffusion coefficient of fluoride (DF) and cumulative fluoride release (CF) in deionized water was determined using the fluoride ion specific electrode (n=3). CS and BFS at 24 h were also tested (n=6). Commercial GICs were used as comparisons. Riva and Riva_M exhibited rapid polyacrylate salt formation. The highest DF and CF were observed with Riva_M (1.65x10-9 cm2/s) and Riva (77 ppm) respectively. Using SPG fillers enhanced DF of GICs on average from ~2.5x10-9 cm2/s to ~3.0x10-9 cm2/s but reduced CF of the materials on average from ~51 ppm to ~42 ppm. The CS and BFS of Ketac_M (144 and 22 MPa) and Fuji IX_M (123 and 30 MPa) were comparable to commercial materials. Using SPG with Riva significantly reduced CS and BFS from 123 MPa to 55 MPa and 42 MPa to 28 MPa respectively. The use of SPG fillers enhanced DF but reduced CF of GICs. Using SPG with Ketac or Fuji IX liquids provided comparable strength to the commercial materials.


2020 ◽  
Vol 172 ◽  
pp. 19009
Author(s):  
Silvia Bizoňová ◽  
Dušan Katunský ◽  
Miloslav Bagoňa

The subject of the study presents the measurement of temperatures on surfaces of glass systems of existing structures and the surfaces of experimental glass systems obtained by dynamic simulation. Measurements were made in the test cells of the Faculty of Civil Engineering of the Technical University of Košice. The partial results of which are the basis for the comparison of the currently installed and experimentally designed glass systems using spectrally selective films. The proposed mathematical-physical model was simplified by replacing the sash, frame and its components with a homogenous element with minimal shape modifications, while this does not have a significant effect on the simulation results. The choice of the proposed glass system respects the need for reduction of solar gains in summer and heat losses in buildings in winter through the weakest part of the building envelope and indicates future energy savings in relation to cooling and heating costs with a view to optimizing light and thermal comfort.


2019 ◽  
Vol 38 (3) ◽  
pp. 471-479 ◽  
Author(s):  
Zeynep Bilge KUTUK ◽  
Uzay KOC VURAL ◽  
Filiz YALCIN CAKIR ◽  
Ivana MILETIC ◽  
Sevil GURGAN

2019 ◽  
Vol 946 ◽  
pp. 84-90
Author(s):  
Liudmila Shtirc ◽  
Svetlana G. Vlasova ◽  
Dmitry Meshcherskikh

In our work we defined two directions for synthesizing porous material: pulping selected experimental glass compositions and using caustic soda as a foaming agent. We studied the foaming temperature settings, investigated the porous material properties. The intensity of the foaming process was estimated from the value of the foaming coefficient.


2018 ◽  
Vol 35 ◽  
pp. 160-177
Author(s):  
Janīna Sētiņa ◽  
Gundars Mežinskis ◽  
Vasilijs Akišins ◽  
Laila Pētersone ◽  
Inna Juhņeviča ◽  
...  

Pētītas iespējas izmantot jaunas izejvielas stikla šķiedras ražošanā, īpašu uzmanību pievēršot Latvijas minerālām izejvielām – devona (Bāles atradne) un juras perioda (Skudras atradne un Pīlādžu atradne) kvarca smiltīm. Apstrādājot ūdenī Skudras atradnes kvarca smiltis, krāsojošo oksīdu daudzums samazināts līdz 0,066 %. Iegūto stiklu īpašību pārbaude parādīja attīrīto Skudru atradnes kvarca smilšu izmantošanas perspektīvu E-tipa stikla šķiedras ražošanā. Veikta arī citu šihtas izejvielu izpēte: kolemanīta, kianīta, kaļķakmens.Pielietojot augstas izšķiršanas spējas skenējošo elektronu mikroskopu, diagnosticēti stikla šķiedras defektu rašanās iemesli un izzināta to novēršanas iespēja.Study of Mineral Raw Materials and Defects in Glass FibresLatvian Devonian period sand from deposit Bāle and Jurassic period sand from deposit Skudra were studied, treated and compared with sand from existing Lithuanian supplier. Investigations of Latvian quartz sand showed that sand is characterized by surface impurities, which are easy to separate combining milling and water purification. These investigations and experimental glass melts using different types of sand confirmed that it is possible to use Latvian refined sand in glass industry.Other glass raw materials – colemanite, kyanite, kaolin, limestone – also have been examined.Glass fibre breakage points were studied using SEM, FTIR and X-Ray diffractions methods. Main reasons of glass fibre breakage are non-homogeneous glass and crystalline or gaseous inclusions coming from corrosion of refractory material. This article is result of the cooperation between Institute of Silicate Materials of Riga Technical University and JSC Valmieras stikla šķiedra.Keywords – glass, glass fibre, raw materials for glass, refined sand, glass defects


Sign in / Sign up

Export Citation Format

Share Document