Substrates with Programmable Heater Arrays for In-Situ Observation of Microstructural Evolution of Polycrystalline Films: Towards Real Time Control of Grain Growth

MRS Advances ◽  
2016 ◽  
Vol 1 (26) ◽  
pp. 1947-1952 ◽  
Author(s):  
Prabhu Balasubramanian ◽  
Chengjian Zheng ◽  
Yixuan Tan ◽  
Genevieve Kane ◽  
Antoinette Maniatty ◽  
...  

ABSTRACTAn integrated experimental – simulation – control theory approach designed to enable adaptive control of microstructural evolution in polycrystalline metals is described. A micro-heater array, containing ten addressable channels, is used to create desired temperature profiles across thin polycrystalline films in situ to a scanning electron microscope (SEM). The goal is that on heating with controlled temperature profiles, the evolution of grain growth within the film can be continuously monitored and compared to Monte Carlo simulations of trajectories towards a desired microstructure. Feed-forward and feedback control strategies are then used to guide the microstructure along the desired trajectory.

2007 ◽  
Vol 990 ◽  
Author(s):  
Chia-Jeng Chung ◽  
David Field ◽  
No-Jin Park ◽  
Christy Woo

ABSTRACTGrain growth in polycrystalline films is controlled by the energetics of the surface, interface and grain boundaries as well as strain energy. The unique character of damascene lines fabricated from electroplated Cu films introduces the additional considerations of bath chemistry and geometric constraints. The moderate stacking fault energy of Cu allows for the development of a substantial twin fraction for certain growth conditions. This paper discusses in-situ observation of grain growth in Cu films and lines under various processing conditions. It is shown that for thicker films and for structures constrained within damascene trenches the energetics of twin boundary formation play a large role in texture development of these structures.


Micron ◽  
2020 ◽  
Vol 131 ◽  
pp. 102825
Author(s):  
Suyun He ◽  
Chunyang Wang ◽  
Lu Qi ◽  
Hengqiang Ye ◽  
Kui Du

2004 ◽  
Vol 467-470 ◽  
pp. 1407-1412 ◽  
Author(s):  
Sandra Piazolo ◽  
Gareth G.E. Seward ◽  
Nick Seaton ◽  
David J. Prior

Experiments in which the microstructural development can be observed at the same time as the crystallography is described fully opens up new, powerful ways to advance our understanding of microstructural processes such as grain growth, primary and secondary recrystallization and phase transformations. In addition, comparison of results of experiments in different materials can be used to develop general laws for the investigated processes. In this study, we briefly review and compare the results from various ongoing studies undertaken in a variety of materials with emphasis on highlighting (a) the scientific potential of such experiments and (b)similarities and differences in their microstructural evolution. Materials studied include metals e.g. Ti, Ni, Al, Mg, Ti-SULC steel and geological materials such as rocksalt (NaCl), hematite and magnetite. Here, we present experimental results and their interpretation in terms of subgrain to grain-scale processes.


2010 ◽  
Vol 638-642 ◽  
pp. 1077-1082 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Kouji Tanaka ◽  
Koukichi Nakanishi

An in-situ observation method for structures at high temperature is developed. The new observation device can reveal grain boundaries at high temperature and enables dynamic observation of these boundaries. Grain growth while maintaining microstructure at high temperature is observed by the new observation device with only one specimen for the entire observation, and grain sizes are quantified. The quantifying process reveals two advantages particular to the use of the new observation device: (1) the ability to quantify grain sizes of specified sizes and (2) the results of average grain size for many grains have significantly less errors because the initial structure is the same for the entire observation and the quantifying process. The new observation device has the function to deform a specimen while observing structures at high temperature, so that enables it to observe dynamic recrystallization of steel. The possibility to observe recrystallization is also shown.


Materialia ◽  
2021 ◽  
Vol 15 ◽  
pp. 100985
Author(s):  
Genki Saito ◽  
Tianglong Zhang ◽  
Norihito Sakaguchi ◽  
Munekazu Ohno ◽  
Kiyotaka Matsuura ◽  
...  

1994 ◽  
Vol 343 ◽  
Author(s):  
S. J. Townsend ◽  
C. S. Nichols

ABSTRACTDuring grain growth, shrinking columnar grains in thin-film polycrystalline microstructures eventually reach sizes comparable to the film thickness. Due to surface drag, the sides of such grains may bow inward rather than remaining fiat through the bulk of the film. The grain boundaries delimiting such small shrinking grains may become unstable long before the surface of the shrinking grain reaches zero area. We report simulation results demonstrating such an instability in the limit of infinite surface drag. This may lead to extremely rapid disappearance of 4- or 5- sided grains, such as have been recently observed in in situ hot-stage TEM experiments on aluminum thin film polycrystals.


2006 ◽  
Vol 15-17 ◽  
pp. 1014-1019 ◽  
Author(s):  
Peter Mayr ◽  
T.A. Palmer ◽  
J.W. Elmer ◽  
Horst Cerjak

A basic requirement for the production of large power plant components from ferritic/martensitic 9-12% Cr steels is good weldability. Weldments in these steels are often reported as the weak spots. In this work the weldability of a creep resistant 9% Cr steel is discussed. Different methods are utilized to characterize the microstructural evolution during different welding cycles and the following post weld heat treatment, as well as the resulting mechanical properties. Heat affected zone (HAZ) simulation using a thermo-mechanical testing device GLEEBLE 1500 is performed to study the microstructural evolution and changes in the mechanical properties in the different parts of the HAZ. Specimens exposed to peak temperatures higher than 1150°C showed a minimum of impact toughness after post weld heat treatment (PWHT). In situ X-ray diffraction experiments with synchrotron radiation are used to observe phase transformations during heating to elevated temperatures, where delta ferrite formation was observed at temperatures higher than 1250°C.


2006 ◽  
Vol 89 (16) ◽  
pp. 161924 ◽  
Author(s):  
Hyo-Jong Lee ◽  
Heung Nam Han ◽  
Do Hyun Kim ◽  
Ui-hyoung Lee ◽  
Kyu Hwan Oh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document