In Situ Observation of Grain Growth and Recrystallization of Steel at High Temperature

2010 ◽  
Vol 638-642 ◽  
pp. 1077-1082 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Kouji Tanaka ◽  
Koukichi Nakanishi

An in-situ observation method for structures at high temperature is developed. The new observation device can reveal grain boundaries at high temperature and enables dynamic observation of these boundaries. Grain growth while maintaining microstructure at high temperature is observed by the new observation device with only one specimen for the entire observation, and grain sizes are quantified. The quantifying process reveals two advantages particular to the use of the new observation device: (1) the ability to quantify grain sizes of specified sizes and (2) the results of average grain size for many grains have significantly less errors because the initial structure is the same for the entire observation and the quantifying process. The new observation device has the function to deform a specimen while observing structures at high temperature, so that enables it to observe dynamic recrystallization of steel. The possibility to observe recrystallization is also shown.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1862 ◽  
Author(s):  
Rongchuang Chen ◽  
Zhizhen Zheng ◽  
Jianjun Li ◽  
Ning Li ◽  
Fei Feng

The relationships between initial microstructures, process parameters, and grain evolutions in isothermal holdings have drawn wide attention in recent years, but the grain growth behaviors of 300M steel were not well understood, resulting in a failure in precise microstructure controlling in heat treatment. In this work, in situ observations were carried out to characterize the grain evolutions of 300M steel with varying holding time, holding temperatures, and initial microstructures. The intriguing finding was that the grain refinement by austenization of 300M steel was followed by a dramatic grain growth in the initial stage of holding (≤~600 s), and with increasing time (~600–7200 s), the average grain size appeared to have a limit value at specific temperatures. The austenization process accelerated the grain growth by generating large quantity of grain boundaries at the initial stage of holdings, and the growth rate gradually slowed down after holding for ~600 s because the driven force was weakened due to the reduction of grain boundary energy. The initial structure and the initial grain size of 300M steel had no obvious influences on the grain size evolutions. The mechanisms of grain growth were analyzed based on in situ observations and transmission electron microscope (TEM) characterizations. A grain evolution model considering the grain boundary migration of 300M steel was established for the isothermal holding process. Good agreement was obtained between the in situ observation results and the model calculation results. This investigation aimed to understand fundamentally the grain evolutions of 300M steel in the isothermal holding process.


2011 ◽  
Vol 691 ◽  
pp. 65-71 ◽  
Author(s):  
Rodolfo F. K. Gunnewiek ◽  
Ruth Herta Goldsmith Aliaga Kiminami

Grain growth is inevitable in the sintering of pure nanopowder zinc oxide. Sintering depend on diffusion kinetics, thus this growth could be controlled by ultra-fast sintering techniques, as microwave sintering. The purpose of this work was to investigate the nanostructural evolution of zinc oxide nanopowder compacts (average grain size of 80 nm) subjected to ultra-rapid microwave sintering at a constant holding temperature of 900°C, applying different heating rates and temperature holding times. Fine dense microstructures were obtained, with controlled grain growth (grain size from 200 to 450nm at high heating rate) when compared to those obtained by conventional sintering (grain size around 1.13µm), which leads to excessively large average final grain sizes.


1987 ◽  
Vol 106 ◽  
Author(s):  
L. R. Zheng ◽  
L. S. Hung ◽  
J. W. Mayer

ABSTRACTThe diffusion behavior of arsenic and the grain growth of Si in arsenic doped poly-Si were investigated by MeV4 He2+ backscattering techniques and transmission electron microscopy. By implanting arsenic ions into poly-Si films the surface portion was made amorphous and crystallized upon annealing. In-situ mssurements showed crystal nucleation and growth at temperatures of 650 – 700° C with a dimension comparable to the thickness of the amorphous layer. Annealing at temperatures up to 850°C increased the number of the large grains, but the average grain size did not change significantly. In the unimplanted region grains retained their initial size until 885°C, although implanted arsenic was found to diffuse into this region along grain boundaries. At 885°C penetration of arsenic into the interior of grains caused significant grain growth. We also found that single implants of boron somewhat increased grain size, whereas boron codoped with arsenic appeared to reduce the effect of arsenic doping. These observations support the hypothesis that the enhanced growth rate and the electrical activity of Si near the grain boundary are closely interrelated.


2003 ◽  
Vol 791 ◽  
Author(s):  
H. A. Calderon ◽  
J. C. Aguilar-Virgen ◽  
F. Cruz-Gandarilla ◽  
M. Umemoto

ABSTRACTProduction of intermetallic materials in the system TiAl3-X (X = Cr, Mn, Fe) has been achieved by means of mechanical milling and sintering techniques. Spark plasma sintering is used since it reduces time at high temperature and inhibits grain growth. The produced materials have grain sizes in the nano and microscale depending on the material and processing variables. The TiAl3-X alloys are formed mostly by the cubic L12 phase. The average grain size ranges between 30 and 50 nm in the as sintered condition. Aging at elevated temperature has been used to promote grain growth. Compression tests have been performed to evaluate mechanical properties as a function of temperature and grain size. In all cases yield stresses higher that 700 MPa are obtained together with a ductility that depends upon temperature and grain size. No ductility is found for the smallest grains sizes tested (30 nm) at room temperature. Above 673 K, these materials show ductility and additionally they present a quasi superplastic behavior at temperatures higher that 973 K. On the other hand ductility can also be developed in the TiAl3-X alloys by inducing grain growth via annealing. Alloys with grains sizes around 500 nm show high ductility and a large density of microcraks after deformation suggesting that the yield strenght becomes lower than the stress to propagate the cracks. In such materials, a considerably high strength is retained up to 873 K.


2021 ◽  
Author(s):  
Chankun Cai ◽  
Yu Shi ◽  
Manyi Xie ◽  
Ke Xue ◽  
Maofeng Xu ◽  
...  

Abstract In this work, the grain growth behaviour of ZnO+V2O5(1 mol%)+Cr2O3(0.35 mol%)-based ceramics with 0.25–0.75 mol% additions of PrMnO3 was systematically investigated during sintering from 850°C to 925°C with the aim to control the ZnO grain size for their application as varistors. It was found that with the increased addition of PrMnO3, not only did the average grain size decrease, but the grain size distribution also narrowed and eventually changed from a bimodal to unimodal distribution after a 0.75 mol% PrMnO3 addition. The grain growth control was achieved by a pinning effect of the secondary ZnCr2O4 and PrVO4 phases at the ZnO grain boundaries. The apparent activation energy of the ZnO grain growth in these ceramics was found to increase with increased additions of PrVO4; hence, the observed reduction in the ZnO grain sizes.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 645
Author(s):  
Igor Litovchenko ◽  
Sergey Akkuzin ◽  
Nadezhda Polekhina ◽  
Kseniya Almaeva ◽  
Evgeny Moskvichev

The effect of high-temperature thermomechanical treatment on the structural transformations and mechanical properties of metastable austenitic steel of the AISI 321 type is investigated. The features of the grain and defect microstructure of steel were studied by scanning electron microscopy with electron back-scatter diffraction (SEM EBSD) and transmission electron microscopy (TEM). It is shown that in the initial state after solution treatment the average grain size is 18 μm. A high (≈50%) fraction of twin boundaries (annealing twins) was found. In the course of hot (with heating up to 1100 °C) plastic deformation by rolling to moderate strain (e = 1.6, where e is true strain) the grain structure undergoes fragmentation, which gives rise to grain refining (the average grain size is 8 μm). Partial recovery and recrystallization also occur. The fraction of low-angle misorientation boundaries increases up to ≈46%, and that of twin boundaries decreases to ≈25%, compared to the initial state. The yield strength after this treatment reaches up to 477 MPa with elongation-to-failure of 26%. The combination of plastic deformation with heating up to 1100 °C (e = 0.8) and subsequent deformation with heating up to 600 °C (e = 0.7) reduces the average grain size to 1.4 μm and forms submicrocrystalline fragments. The fraction of low-angle misorientation boundaries is ≈60%, and that of twin boundaries is ≈3%. The structural states formed after this treatment provide an increase in the strength properties of steel (yield strength reaches up to 677 MPa) with ductility values of 12%. The mechanisms of plastic deformation and strengthening of metastable austenitic steel under the above high-temperature thermomechanical treatments are discussed.


2021 ◽  
Vol 291 ◽  
pp. 129520
Author(s):  
N.R. Abdul Razak ◽  
X.F. Tan ◽  
F. Somidin ◽  
H. Yasuda ◽  
S.D. McDonald ◽  
...  

2014 ◽  
Vol 782 ◽  
pp. 3-7
Author(s):  
Kenji Shinozaki ◽  
Motomichi Yamamoto ◽  
Kohta Kadoi ◽  
Peng Wen

Solidification cracking during welding is very serious problem for practical use. Therefore, there are so many reports concerning solidification cracking. Normally, solidification cracking susceptibility of material is quantitatively evaluated using Trans-Varestraint test. On the other hand, local solidification cracking strain was tried to measure precisely using in-situ observation method, called MISO method about 30 years ago. Recently, digital high-speed video camera develops very fast and its image quality is very high. Therefore, we have started to observe solidification crack using in site observation method. In this paper, the local critical strain of a solidification crack was measured and the high temperature ductility curves of weld metals having different dilution ratios and different grain sizes to evaluate quantitatively the effects of dilution ratio and grain size on solidification cracking susceptibility by using an improved in situ observation method.


2007 ◽  
Vol 29-30 ◽  
pp. 143-146 ◽  
Author(s):  
Aamir Mukhtar ◽  
De Liang Zhang ◽  
C. Kong ◽  
P. R. Munroe

Cu-(2.5 or 5.0vol.%)Al2O3 nanocomposite balls and granules and Cu-(2.5vol.% or 5.0vol.%)Pb alloy powder were prepared by high energy mechanical milling (HEMM) of mixtures of Cu and either Al2O3 or Pb powders. It was observed that with the increase of the content of Al2O3 nanoparticles from 2.5vol.% to 5vol.% in the powder mixture, the product of HEMM changed from hollow balls into granules and the average grain size and microhardness changed from approximately 130nm and 185HV to 100nm and 224HV, respectively. On the other hand, HEMM of Cu–(2.5 or 5.0vol.%) Pb powder mixtures under the same milling conditions failed to consolidate the powder in-situ. Instead, it led to formation of nanostructured fine powders with an average grain size of less than 50nm. Energy dispersive X-ray mapping showed homogenous distribution of Pb in the powder particles in Cu–5vol.%Pb alloy powder produced after 12 hours of milling. With the increase of the Pb content from 2.5 to 5.0 vol.%, the average microhardness of the Cu-Pb alloy powder particles increases from 270 to 285 HV. The mechanisms of the effects are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document