scholarly journals Application of Low-Cost Cu–Sn Bimetal Alloy as Oxygen Reduction Reaction Catalyst for Improving Performance of the Microbial Fuel Cell

MRS Advances ◽  
2018 ◽  
Vol 3 (13) ◽  
pp. 663-668 ◽  
Author(s):  
Md. T Noori ◽  
Gaurav Dhar Bhowmick ◽  
Bikash R Tiwari ◽  
M.M. Ghangrekar ◽  
C.K. Mukhrejee

ABSTRACTIn this experiment, a new bimetal low–cost Cu–Sn alloy was synthesized and it was tested as catalyst for oxygen reduction reaction (ORR) in MFC and the results were compared with the commercially available Pt-C catalyst. Cyclic voltammetry for evaluating ORR of the test cathode containing Cu-Sn catalysts under oxygen saturated environment displayed large ORR current peak, showing less overpotential demand for ORR. Maximum power density of 457 mW/m2 obtained from MFC using Cu–Sn catalyst, was found to be slightly higher than the power density of 446 mW/m2 demonstrated by MFC using Pt based cathode. Biochemical conversion of organic matter to direct electric current in Cu–Sn based MFC occurred at a coulombic efficiency of 55.8%, while demonstrating 92% of chemical oxygen demand removal. This study demonstrated application of low cost Cu–Sn bimetal alloy as excellent ORR catalyst in MFC and would be very helpful to commission larger MFCs for field applications to harvest energy in the form of direct electricity from wastewaters while offering wastewater treatment.

MRS Advances ◽  
2018 ◽  
Vol 3 (53) ◽  
pp. 3171-3179 ◽  
Author(s):  
Indrasis Das ◽  
Md. T. Noori ◽  
Gourav Dhar Bhowmick ◽  
M.M. Ghangrekar

ABSTRACTOverpotential losses on cathode during oxygen reduction reaction (ORR) causes serious performance depletion in microbial fuel cells (MFCs). High cost of existing platinum based noble catalysts is one of the main reason for growing interest in the research of low cost sustainable cathode catalysts to improve ORR in order to enhance power generation from MFCs. The present study demonstrates application of low-cost bimetallic ferrite, Co0.5Zn0.5Fe2O4, as a cathode catalyst in MFC. The electrochemical tests of cathode having this catalyst revealed an excellent cathodic current response of 25.76 mA with less charge transfer resistance of 0.7 mΩ, showing remarkable catalytic activity. The MFC using this catalyst on cathode could generate a power density of 172.1 ± 5.2 mW/m2, which was found to be about 10 times higher than the power density of 15.2 ± 1.3 mW/m2 obtained from a MFC using only acetelyne black (AB) on cathode and noted even higher than the power density produced by MFC with Pt/C cathode (151.3 ± 2.8 mW/m2). In addition, the wastewater treatment in terms of chemical oxygen demand (COD) removal efficiency of MFC with Co0.5Zn0.5Fe2O4 on cathode was found to be better (87 %) among the tested MFCs. Hence, the results obtained from this study illustrates the applicability of Co0.5Zn0.5Fe2O4 as an excellent and suitable cathode catalyst for scaling up of MFCs.


2021 ◽  
Vol 154 (3) ◽  
pp. 034705
Author(s):  
Minchan Li ◽  
Ning Qin ◽  
Zongwei Ji ◽  
Qingmeng Gan ◽  
Zhenyu Wang ◽  
...  

2021 ◽  
pp. 2102974
Author(s):  
Jingyu Feng ◽  
Rongsheng Cai ◽  
Emanuele Magliocca ◽  
Hui Luo ◽  
Luke Higgins ◽  
...  

2018 ◽  
Vol 42 (3) ◽  
pp. 2081-2088 ◽  
Author(s):  
Man Zhang ◽  
Wei Hong ◽  
Ruinan Xue ◽  
Lingzhi Li ◽  
Guanbo Huang ◽  
...  

At present, low-cost and efficient electrocatalysts for accelerating the oxygen reduction reaction in fuel cells are highly desired.


RSC Advances ◽  
2017 ◽  
Vol 7 (89) ◽  
pp. 56375-56381 ◽  
Author(s):  
Xinxin Jin ◽  
Yu Jiang ◽  
Qi Hu ◽  
Shaohua Zhang ◽  
Qike Jiang ◽  
...  

Low-cost dual transition metal (Fe and Co) based non-noble metal electrocatalysts (NNMEs) with large surface area and porous structure boost oxygen reduction reaction (ORR) performance in alkaline solution.


2021 ◽  
Author(s):  
Fengjiao Yu ◽  
Qi Ying ◽  
Shaofeng Ni ◽  
Chenxue Li ◽  
Daxiang Xue ◽  
...  

Large-scale application of rechargeable Zn-air batteries requires low-cost electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as alternatives to noble metals. Herein, FeCo nanoparticles embedded in N-doped...


Sign in / Sign up

Export Citation Format

Share Document