Thermodynamic analysis of chemical compatibility of ceramic reinforcement materials with niobium aluminides

1990 ◽  
Vol 5 (7) ◽  
pp. 1561-1566 ◽  
Author(s):  
Ajay K. Misra

Niobium aluminide-based intermetallic matrix composites are currently being considered as potential high-temperature structural materials. One of the key factors in the selection of a reinforcement material is its chemical stability in the matrix. In this study, chemical interactions between two niobium aluminides, Nb3Al and Nb2Al, and several potential ceramic reinforcement materials, which include carbides, borides, nitrides, and oxides, were analyzed from thermodynamic considerations. Several thermodynamically stable reinforcement materials have been identified for these two matrices.

1990 ◽  
Vol 213 ◽  
Author(s):  
D.E. Alman ◽  
N.S. Stoloff

ABSTRACTThis paper is concerned with the processing and mechanical properties of intermetallic-matrix composites. The effects of processing variables on fabrication of compounds including Ni3Al, NiAl, TiTaAl2, MoSi2 and their composites is described. A key concern is with processing effects on microstructure, selection of compatible ceramic reinforcing phases, and whisker alignment through injection molding.


1992 ◽  
Vol 273 ◽  
Author(s):  
Li-Chyong Chen ◽  
Ernest L. Hall ◽  
Karen A. Lou

ABSTRACTA novel way of producing particulate intermetallic matrix composites based on Nb-Al in one step using pulsed laser deposition (PLD) has been investigated. One unique characteristic, inherent to laser ablation, is the generation of particulates. These particulates condense on the substrate and become part of the film. In some cases, such as in high Tc superconducting or optical films applications, it is believed that the presence of particulates diminishes the quality of the films. In this work, we demonstrate that it can be advantageous in some applications to incorporate these particulates into the films.Nb-Al films were prepared by laser ablation from a Nb3Al target using a 248nm KrF excimer laser at various fluences and substrate temperatures. Transmission (TEM) and scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Auger electron spectroscopy (AES) were used to characterize the samples. The resultant films consist of a homogeneous matrix with uniformly distributed inclusions. The size of the particles generated by PLD is in the range of a few tens of nanometers to a few microns. EDX shows that the matrix has a composition of Nb7A13 and the particulates contain barely detectable Al. The mechanism of the depletion of Al in the particulates will be discussed. The merit of having a ductile Nb phase embedded in the intermetallic matrix is evident as the cracks generated during TEM sample thinning process propagate in the brittle matrix and finally are arrested at the ductile inclusions.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1479-1484 ◽  
Author(s):  
JONGHOON KIM ◽  
BONGGYU PARK ◽  
YONGHO PARK ◽  
IKMIN PARK ◽  
HEESOO LEE

Intermetallic matrix composites reinforced with ceramic particles have received a great deal of attention. Iron aluminide is known to be a good material for the matrix in such composites. Two processes were used to fabricate FeAl - TiB 2 intermetallic matrix composites. One was liquid melt in-situ mixing, and the other was arc melting and suction casting processes. FeAl - TiB 2 IMCs obtained by two different methods were investigated to elucidate the influence of TiB 2 content. In both methods, the grain size in the FeAl alloy decreased with the presence of titanium diboride. The grain size of in-situ FeAl - TiB 2 IMCs became smaller than that of arc FeAl - TiB 2 IMCs. Significant increase in fracture stress and hardness was achieved in the composites. The in-situ process gives clean, contamination-free matrix/reinforcement interface which maintained good bonding causing high load bearing capability. This contributed to the increase in the mechanical properties of composites.


Author(s):  
Warren J. Moberly ◽  
Daniel B. Miracle ◽  
S. Krishnamurthy

Titanium-aluminum alloy metal matrix composites (MMC) and Ti-Al intermetallic matrix composites (IMC), reinforced with continuous SCS6 SiC fibers are leading candidates for high temperature aerospace applications such as the National Aerospace Plane (NASP). The nature of deformation at fiber / matrix interfaces is characterized in this ongoing research. One major concern is the mismatch in coefficient of thermal expansion (CTE) between the Ti-based matrix and the SiC fiber. This can lead to thermal stresses upon cooling down from the temperature incurred during hot isostatic pressing (HIP), which are sufficient to cause yielding in the matrix, and/or lead to fatigue from the thermal cycling that will be incurred during application, A second concern is the load transfer, from fiber to matrix, that is required if/when fiber fracture occurs. In both cases the stresses in the matrix are most severe at the interlace.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
M. A. Burke

Intermetallic matrix composites are candidates for ultrahigh temperature service when light weight and high temperature strength and stiffness are required. Recent efforts to produce intermetallic matrix composites have focused on the titanium aluminide (TiAl) system with various ceramic reinforcements. In order to optimize the composition and processing of these composites it is necessary to evaluate the range of structures that can be produced in these materials and to identify the characteristics of the optimum structures. Normally, TiAl materials are difficult to process and, thus, examination of a suitable range of structures would not be feasible. However, plasma processing offers a novel method for producing composites from difficult to process component materials. By melting one or more of the component materials in a plasma and controlling deposition onto a cooled substrate, a range of structures can be produced and the method is highly suited to examining experimental composite systems. Moreover, because plasma processing involves rapid melting and very rapid cooling can be induced in the deposited composite, it is expected that processing method can avoid some of the problems, such as interfacial degradation, that are associated with the relatively long time, high temperature exposures that are induced by conventional processing methods.


2000 ◽  
Author(s):  
Ronald Gibala ◽  
Amit K. Ghosh ◽  
David J. Srolovitz ◽  
John W. Holmes ◽  
Noboru Kikuchi

Author(s):  
David K. Hsu ◽  
Peter K. Liaw ◽  
George Y. Baaklini

Metal matrix composites (MMC) and intermetallic matrix composites (IMC) are materials of complex structure. Nominally defect-free, as-manufactured MMC requires nondestructive evaluation (NDE) for quality assurance and process monitoring purposes. In this work, three NDE techniques — ultrasonics, eddy current, and X-ray radiography — were applied to un-damaged NiFeAI/Wf coupons. Images of the coupons were obtained using the three techniques. The NDE results were compared among themselves, and correlations were sought between these results and microstructural features of the specimen. Consistencies were found among the NDE results and a strong correlation was found between the spatial variation of fiber density and the NDE signals.


2000 ◽  
Vol 6 (5) ◽  
pp. 452-462 ◽  
Author(s):  
Julie M. Cairney ◽  
Robert D. Smith ◽  
Paul R. Munroe

AbstractTransmission electron microscope samples of two types of metal matrix composites were prepared using both traditional thinning methods and the more novel focused ion beam miller. Electropolishing methods were able to produce, very rapidly, thin foils where the matrix was electron transparent, but the ceramic reinforcement particles remained unthinned. Thus, it was not possible in these foils to study either the matrix-reinforcement interface or the microstructure of the reinforcement particles themselves. In contrast, both phases in the composites prepared using the focused ion beam miller thinned uniformly. The interfaces in these materials were clearly visible and the ceramic reinforcement was electron transparent. However, microstructural artifacts associated with ion beam damage were also observed. The extent of these artifacts and methods of minimizing their effect were dependent on both the materials and the milling conditions used.


Sign in / Sign up

Export Citation Format

Share Document