Plastic deformation in an Al–Cu–Fe icosahedral alloy

1993 ◽  
Vol 8 (6) ◽  
pp. 1199-1202 ◽  
Author(s):  
J.E. Shield ◽  
M.J. Kramer ◽  
R.W. McCallum

Al—Cu—Fe quasicrystalline alloys have been deformed by high-temperature creep between 680 and 740 °C. Deformations greater than 30% were achieved without cracking. Analysis of the data in the quasi-steady state regime reveals power law behavior with a stress exponent of 2.5. The activation energy for deformation was determined to be 640 ± 20 kJ/mole in the temperature region investigated. Transmission electron microscopy revealed lamellar defects which appear similar to twins.

1992 ◽  
Vol 7 (9) ◽  
pp. 2360-2364 ◽  
Author(s):  
J.L. Routbort ◽  
K.C. Goretta ◽  
D.J. Miller ◽  
D.B. Kazelas ◽  
C. Clauss ◽  
...  

Dense polycrystalline Bi2Sr1.7CaCu2Ox (2212) was deformed from 780–835 °C in oxygen partial pressures, Po2, of 103 to 2 × 104 Pa. Results could be divided into two stress regimes: one at lower stress in which the steady-state creep rate, ∊, was proportional to stress, γ, having an activation energy of 990 ± 190 kJ/mole and being independent of PO2, and another at higher stress in which ∊ was proportional to σn, with n ≍ 5–6. Transmission electron microscopy supported the interpretation that in the lower-stress viscous regime, creep was controlled by diffusion, whereas dislocation glide and microcracking were responsible for strain accommodation at higher stresses.


1994 ◽  
Vol 9 (2) ◽  
pp. 343-347 ◽  
Author(s):  
J.E. Shield ◽  
M.J. Kramer ◽  
R.W. McCallum

The deformation characteristics of icosahedral Al70Pd21.5Mn8.5 have been investigated by high temperature creep experiments, and the resultant microstructures have been examined by transmission electron microscopy (TEM). From 730 to 780 °C, microstructural analysis revealed that the deformation is controlled by dislocation glide, with an activation energy of 210 ± 30 kJ/mole and a stress exponent of 1.2 ± 0.2. From 780 to 810 °C, microstructures were characteristic of deformation controlled by dislocation glide and climb. The activation energy and stress exponent were determined to be 1700 ± 80 kJ/mole and 2.9 ± 0.3, respectively. Hardness measurements also reflected an increase in dislocation density, as the hardness of the deformed samples was approximately 10% higher than the as-cast sample.


1998 ◽  
Vol 540 ◽  
Author(s):  
N. Baluc ◽  
Y. Dai ◽  
M. Victoria

AbstractSingle crystalline specimens of pure Pd have been irradiated at ambient temperature with 590 MeV protons to doses ranging between 10−4 and 10−1 dpa. Tensile deformation experiments revealed that irradiation induces hardening and embrittlement, while scanning (SEM) and transmission electron microscopy (TEM) observations showed that plastic deformation of specimens irradiated to a dose ≥ 10−2 dpa is strongly localized and yields the creation of slip bands at the macroscopic scale and of defect-free channels at the microscopic level.


1990 ◽  
Vol 201 ◽  
Author(s):  
R. Jebasinski ◽  
S. Mantl ◽  
K. Radermacher ◽  
P. Fichtner ◽  
W. Jăger ◽  
...  

AbstractThe coarsening of CoSi2 precipitates and the microstructural evolution of (111) Si implanted with 200 keV Co+ ions at 350°C and fluences of 1×1016cm−2 and 6×1016cm−2 were investigated as a function of depth, annealing temperature and annealing time using Rutherford Backscattering Spectroscopy (RBS) and Transmission Electron Microscopy (TEM). After annealing cross-section TEM micrographs show a layered array of platelet-shaped precipitates with preferred facets on {111} planes. The fraction of Co-atoms, that were redistributed during the different annealing temperatures and times, has been used to determine an activation energy for the precipitate coarsening. By applying the Meechan-Brinkman and the change-of-slope methods, we obtained activation energies in the range of 3.2 – 3.6 eV.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Tohid Naseri ◽  
Daniel Larouche ◽  
Rémi Martinez ◽  
Francis Breton

1998 ◽  
Vol 513 ◽  
Author(s):  
V. J. Gadgil ◽  
E. G. Keima ◽  
H. J. M. Geijselaers

ABSTRACTHydrogen can influence the behaviour of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the surface of stainless steel was investigated using electrochemical cathodic charging. Microhardness was measured on the cross section. Transmission electron microscopy was used to investigate the dislocation substructure just below the surface. Computer simulation using finite element method was carried out to estimate the extent and severity of the deformation. The significance of the results are discussed in relation to the loss of ductility due to hydrogen.


Sign in / Sign up

Export Citation Format

Share Document