Plasticity and Microstructure of Irradiated Pd

1998 ◽  
Vol 540 ◽  
Author(s):  
N. Baluc ◽  
Y. Dai ◽  
M. Victoria

AbstractSingle crystalline specimens of pure Pd have been irradiated at ambient temperature with 590 MeV protons to doses ranging between 10−4 and 10−1 dpa. Tensile deformation experiments revealed that irradiation induces hardening and embrittlement, while scanning (SEM) and transmission electron microscopy (TEM) observations showed that plastic deformation of specimens irradiated to a dose ≥ 10−2 dpa is strongly localized and yields the creation of slip bands at the macroscopic scale and of defect-free channels at the microscopic level.

2005 ◽  
Vol 495-497 ◽  
pp. 1013-1018 ◽  
Author(s):  
Grethe Winther

This paper combines experimental evidence at the mesoscopic and microscopic levels of the physical slip underlying plastic deformation in an aluminium polycrystal in the evaluation of crystal plasticity models. At the mesoscopic level, lattice rotations of individual bulk grains during deformation have been measured using high-energy synchrotron radation (3DXRD). At the microscopic level, deformation induced dislocation structures have been investigated by transmission electron microscopy. The performance of two different versions of the Taylor model taking different approaches to the ambiguity problem is evaluated.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


1998 ◽  
Vol 513 ◽  
Author(s):  
V. J. Gadgil ◽  
E. G. Keima ◽  
H. J. M. Geijselaers

ABSTRACTHydrogen can influence the behaviour of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the surface of stainless steel was investigated using electrochemical cathodic charging. Microhardness was measured on the cross section. Transmission electron microscopy was used to investigate the dislocation substructure just below the surface. Computer simulation using finite element method was carried out to estimate the extent and severity of the deformation. The significance of the results are discussed in relation to the loss of ductility due to hydrogen.


2005 ◽  
Vol 20 (6) ◽  
pp. 1422-1427 ◽  
Author(s):  
Byong-Taek Lee ◽  
Waltraud M. Kriven

The high-temperature indentation fracture and microstructures of dysprosium niobate (DyNbO4) were investigated by optical, scanning, and transmission electron microscopy (OM, SEM, and TEM). Polycrystalline samples were sintered at 1350 °C for 3 h and cut into 3 mm disks for TEM. The disks were indented in a Nikon QM (Tokyo, Japan) hot hardness indenter at room temperature up to 1000 °C. Many lamellar twins having different widths were observed by TEM as well as intergranular microcracks. The room temperature hardness was relatively low at 5.64 GPa and decreased with elevated temperatures. Crack lengths were short, showing a typical micro-cracking effect. In the sample indented at 1000 °C, dislocations in periodic arrays were evident, and their density increased markedly due to heavy plastic deformation.


2003 ◽  
Vol 805 ◽  
Author(s):  
Peter Schall ◽  
Michael Feuerbacher ◽  
Knut Urban

ABSTRACTWe present a study of the deformation mechanism of decagonal Al73Ni10Co17 quasicrystals by means of transmission electron microscopy. We performed compression tests on single-quasicrystalline samples in three different orientations: with the compression axis parallel to, inclined by 45 ° and perpendicular to the tenfold axis of the decagonal quasicrystal. The deformed samples reveal characteristic orientation-dependent dislocation structures leading us to the conclusion that fundamentally different deformation mechanisms are involved in plastic deformation in the three deformation geometries. We explicitly identified the Burgers vectors of the dislocations as interatomic vectors in the structure of decagonal Al-Ni-Co.


1994 ◽  
Vol 364 ◽  
Author(s):  
Y. Gao ◽  
J. Zhu ◽  
Q. G. Cai

AbstractThe deformation structure of polycrystalline TiAl-based alloys after uniaxial compression at temperature range from 77K to 1073K has been examined using transmission electron microscopy. It was observed that a large number of faulted dipoles are commonly present in deformation structure of the alloys compressed at low temperature 77K and room temperature. The nature of the faulted dipoles has been determined to be intrinsic stacking fault lying on {111} plane, bounded by 1/6<112] partial dislocations. A possible mechanism for the formation of the faulted dipoles was suggested. The results of the statistic observation shows that faulted dipoles in deformed Ti-48A1 and Ti-(47–48) Al-X (X = V,Cr,Mn) alloys are less than those in single phase Ti-52A1 alloy, and the number of the faulted dipoles decreases with increasing deformation temperature. The effect of the faulted dipoles on plastic deformation of the alloy was discussed.


Sign in / Sign up

Export Citation Format

Share Document