CoSi2 Precipitate Coarsening During Formation of Buried Epitaxial Cosi2 Layers By Ion Beam Synthesis

1990 ◽  
Vol 201 ◽  
Author(s):  
R. Jebasinski ◽  
S. Mantl ◽  
K. Radermacher ◽  
P. Fichtner ◽  
W. Jăger ◽  
...  

AbstractThe coarsening of CoSi2 precipitates and the microstructural evolution of (111) Si implanted with 200 keV Co+ ions at 350°C and fluences of 1×1016cm−2 and 6×1016cm−2 were investigated as a function of depth, annealing temperature and annealing time using Rutherford Backscattering Spectroscopy (RBS) and Transmission Electron Microscopy (TEM). After annealing cross-section TEM micrographs show a layered array of platelet-shaped precipitates with preferred facets on {111} planes. The fraction of Co-atoms, that were redistributed during the different annealing temperatures and times, has been used to determine an activation energy for the precipitate coarsening. By applying the Meechan-Brinkman and the change-of-slope methods, we obtained activation energies in the range of 3.2 – 3.6 eV.

2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


2000 ◽  
Vol 646 ◽  
Author(s):  
M. Zakaria ◽  
P.R. Munroe

ABSTRACTVoid formation in stoichiometric NiAl was studied through controlled heat treatments and transmission electron microscopy. Voids formed at temperatures as low as 400°C, but dissolved during annealing at 900°C. Both cuboidal and rhombic dodecahedral voids were observed, often at the same annealing temperature. At higher annealing temperatures (>800°C) extensive dislocation climb was noted. The relative incidence of void formation and dislocation climb can be related to the mobility of vacancies at each annealing temperature. Further, differences in void shape can be described in terms of their relative surface energy and mode of nucleation.


1987 ◽  
Vol 2 (2) ◽  
pp. 211-215 ◽  
Author(s):  
R. S. Bhattacharya ◽  
A. K. Rai ◽  
P. P. Pronko

Ion-beam mixing of Ti layers with sintered α-SiC and hot-pressed Si3N4 was measured for 1 McV Au+ at doses of 1X1016 cm−2 and 5X1016 cm−2. Rutherford backscattering (RBS) and cross-section transmission electron microscopy (XTEM) were used to evaluate the mixing. Mixing was observed in Ti/SiC system; however, there was no mixing in Ti/Si3N4 system. Results are discussed in light of the enthalpy of mixing criterion for metal-insulator systems.


1996 ◽  
Vol 438 ◽  
Author(s):  
D. Lenssen ◽  
S. Mesters ◽  
S. Mesters

AbstractSubmicrometer cobalt disilicide wires in Si(100) were fabricated by ion beam synthesis. We implanted cobalt ions through the openings of an implant mask made by direct electron beam writing. The formation of the wires was achieved by rapid thermal annealing at temperatures up to 1100°C for 10s. The produced wires have thicknesses of about 85 nm and widths depending on the widths of the implant mask which were varied between 1 μm and 100 nm. These wires were characterized by means of cross-section transmission electron microscopy and magnetoresistance measurements at low temperatures. The results can be well explained by weak localization with strong spirn-orbit scattering and superconducting fluctuation (Maki-Thompson) corrections.


2018 ◽  
Author(s):  
Frédéric Lorut ◽  
Alexia Valéry ◽  
Nicolas Chevalier ◽  
Denis Mariolle

Abstract Dopants imaging using scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy are used for identifying doped areas within a device, the latter being analyzed either in a top view or in a side view. This paper presents a sample preparation workflow based on focused ion beam (FIB) use. A discussion is then conducted to assess advantages of the method and factors to monitor vigilantly. Dealing with FIB machining, any sample preparation geometry can be achieved, as it is for transmission electron microscopy (TEM) sample preparation: cross-section, planar, or inverted TEM preparation. This may pave the way to novel SCM imaging opportunities. As FIB milling generates a parasitic gallium implanted layer, a mechanical polishing step is needed to clean the specimen prior to SCM imaging. Efforts can be conducted to reduce the thickness of this layer, by reducing the acceleration voltage of the incident gallium ions, to ease sample cleaning.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Sign in / Sign up

Export Citation Format

Share Document