High temperature oxidation of ion-plated CrN films

1994 ◽  
Vol 9 (1) ◽  
pp. 151-155 ◽  
Author(s):  
Hiroshi Ichimura ◽  
Atsuo Kawana

The high-temperature oxidation of CrN films which were deposited onto stainless steel substrates using an arc ion plating apparatus was studied at temperatures ranging from 1023 to 1173 K for 0.6 to 480 ks in air. The oxidation rate obtained from mass gain as a function of time was found to fit well to a parabolic time dependence. Formed oxide layers were analyzed by XRD, SEM, and SAM. An activation energy of the oxidation of CrN was slightly lower than that of the self-diffusion coefficient of Cr ion in Cr2O3. It is concluded that the oxidation of CrN is controlled by the outward diffusion of Cr ions through the Cr2O3 layer formed on each CrN grain.

2013 ◽  
Vol 761 ◽  
pp. 125-129 ◽  
Author(s):  
Kazuya Hamaguchi ◽  
Tomoyuki Tsuchiyama ◽  
Junichi Matsushita

Tantalum (Ta) can be use a suture for operation and implant material in order not to react with body fluid and stimulate a human body. In this study, the stable oxide of a tantalum, tantalum oxide layer produced by oxidation of the tantalum nitride, TaN powders by high temperature oxidation were investigated in order to determine the possibility of its a distributed aid for biomaterial composite such as an artificial root etc. The sample, TaN powder oxidized at high temperature exhibited a steady mass gain with increasing oxidation temperature. Based on the results of the XRD, tantalum oxide, Ta2O5 was detected on the samples. It is considered, the TaN showed a good oxidation film produced by high temperature oxidation.


2012 ◽  
Vol 472-475 ◽  
pp. 288-292
Author(s):  
Cean Guo ◽  
Jian Zhang ◽  
Li Yang ◽  
Wei Zhou ◽  
Hong Hui Sun

Cr coatings were deposited on AISI H13 steel substrates by means of electrospark deposition (ESD). The coatings were characterized in terms of their microstructure, hardness, friction and wear behavior and high-temperature oxidation resistance. Micro-indentation and tribometer testers were employed to measure the mechanical properties of Cr coatings and AISI H13 steel. The results showed that the hardness of the coatings ranged from 600 to 660 HV, with a higher value than that of AISI H13 steel (510 HV). The coefficient of steady-state friction of the coatings against 45-carbon-steel balls ranged from 0.23 to 0.27, with a lower value than that of AISI H13 steel (0.62-0.68). The isothermal oxidation behavior of the coatings at 850°Cwas studied in comparison with AISI H13 steel substrates. The results indicated that Cr coatings substantially increase the high-temperature oxidation resistance of AISI H13 steel and the oxidation process was retarded mainly by the presence of a Cr2O3 oxide scale on the coatings at 850°C for 100 hours.


Author(s):  
ZHAO ZHANG ◽  
JIANING LI ◽  
ZHIYUN YE ◽  
CAINIAN JING ◽  
MENG WANG ◽  
...  

In this paper, the high-temperature oxidation resistant coating on the TA15 titanium alloy by laser cladding (LC) of the KF110-B4C-Ag mixed powders was analyzed in detail. The scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) images indicated that a good metallurgy bond between the fabricated coating/TA15 was formed; also the fine/compact microstructure was produced after a cladding process. The oxidation mass gain of TA15 was higher than that of the coating after LC process, which were 3.72 and 0.91[Formula: see text]mg[Formula: see text]cm[Formula: see text], respectively, at 60[Formula: see text]h, greatly enhancing the high temperature oxidation resistance.


2020 ◽  
Vol 861 ◽  
pp. 83-88
Author(s):  
You Yang ◽  
Xiao Dong Wang

High temperature oxidation dynamic behaviors and mechanisms for 30Cr25Ni20Si heat-resistant steel were investigated at 800, 900 and 1000°C. The oxide layers were characterized by scanning electron microscopy (SEM-EDS), X-ray diffractometer (XRD). The results showed that the oxidation rate of test alloys is increased with increasing the oxidation time. The oxidation dynamic curves at 800 and 900°C follow from liner to parabolic oxidation law. The transition point is 10 h. At 1000°C, the steel exhibits a catastrophic oxidation, and the oxidation mass gain value at 50 h is 0.77 mg/cm2. This suggests that the steel at 900°C has formed a dense protective surface oxidation film, effectively preventing the diffusion of the oxygen atoms and other corrosive gas into the alloy. Therefore, at the first stage of oxidation, chemical adsorption and reaction determine the oxide film composition and formation process. At the oxide film growth stage, oxidation is controlled by migration of ions or electrons across the oxide film. When the spinel scale forms, it acts as a compact barrier for O element and improving the oxidation resistance.


2010 ◽  
Vol 97-101 ◽  
pp. 1479-1483
Author(s):  
Yan Cai ◽  
Chun Hu Tao ◽  
Feng Lu ◽  
Jian Ping Li

Gradient Zr/ZrN/Zr layer was deposited as a diffusion barrier between the NiCrAlYSi The overlay coating and Ni-base superalloy DZ125 by arc ion plating(AIP). The microstructure and high-temperature oxidation behavior of the diffusion barrier were studied. The results show that the gradient diffusion barrier is homogeneous and compact, and has strong bond strength with the substrate. The diffusion barrier is composed of three layers, among which the inner and outer layers are rich in Zr, and the middle layer is rich in ZrN. The main phase structure of the diffusion barrier is ZrN(200). During high temperature oxidation at 1100°C, the Zr/ZrN/Zr/HY3 compound coating system presents excellent oxidation resistance.


2005 ◽  
Vol 475-479 ◽  
pp. 801-804
Author(s):  
J.W. Kim ◽  
Dong Bok Lee

The Ti46Al2Nb2Mo and Ti45.4Al4.8Nb alloys were oxidized isothermally and cyclically in air between 800 and 1000oC, and their oxidation characteristics were investigated. Nb and Mo were beneficial to oxidation resistance. The initially formed thin TiO2-rich scale changed to an outer, superficial TiO2 layer, a thick Al2O3-rich middle layer, and an inner (TiO2-rich, Al2O3-deficient) layer, as the extent of oxidation progressed. The dissolved ions of Mo and Nb had a tendency to be expelled from the outer TiO2 layer, which was formed by the outward diffusion of Ti ions, to the inner (TiO2-rich, Al2O3-deficient) layer, which was formed by the inward transport of oxygen, owing to the nobility of Mo and Nb when compared to Ti and Al.


2011 ◽  
Vol 686 ◽  
pp. 613-617
Author(s):  
Jian Zhang ◽  
Cean Guo ◽  
Gang Zhang ◽  
Chong Rui Wang ◽  
Shi Ming Hao

NiCrAlY coatings were deposited on CrNi3MoVA steel substrates by means of magnetron sputtering. The coatings were characterized in terms of their microstructure, hardness, friction coefficient, high-temperature oxidation resistance. Micro-indentation and tribometer testers were employed to measure the mechanical properties of NiCrAlY coatings and CrNi3MoVA steel. The results showed that the hardness of the coatings ranged from 5.7 to 5.9 GPa, with a higher value than that of CrNi3MoVA steel(4.1-4.3 GPa). The coefficient of steady-state friction of the coatings against 45-carbon-steel balls ranged from 0.35 to 0.40, with a lower value than that of CrNi3MoVA steel(0.63-0.68). The isothermal oxidation behavior at 850°C of the coatings were studied in comparison with CrNi3MoVA steel substrates. The results indicated that NiCrAlY coatings substantially increase the high-temperature oxidation resistance of CrNi3MoVA steel and the oxidation process was retarded mainly by the presence of outer complex oxide scales and a continuous Al2O3 inner layer on the coating.


Sign in / Sign up

Export Citation Format

Share Document