Oxidation of Tantalum Nitride

2013 ◽  
Vol 761 ◽  
pp. 125-129 ◽  
Author(s):  
Kazuya Hamaguchi ◽  
Tomoyuki Tsuchiyama ◽  
Junichi Matsushita

Tantalum (Ta) can be use a suture for operation and implant material in order not to react with body fluid and stimulate a human body. In this study, the stable oxide of a tantalum, tantalum oxide layer produced by oxidation of the tantalum nitride, TaN powders by high temperature oxidation were investigated in order to determine the possibility of its a distributed aid for biomaterial composite such as an artificial root etc. The sample, TaN powder oxidized at high temperature exhibited a steady mass gain with increasing oxidation temperature. Based on the results of the XRD, tantalum oxide, Ta2O5 was detected on the samples. It is considered, the TaN showed a good oxidation film produced by high temperature oxidation.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3764
Author(s):  
Krzysztof Aniołek ◽  
Adrian Barylski ◽  
Marian Kupka

High-temperature oxidation was performed at temperatures from 600 to 750 °C over a period of 24 h and 72 h. It was shown in the study that the oxide scale became more homogeneous and covered the entire surface as the oxidation temperature increased. After oxidation over a period of 24 h, the hardness of the produced layers increased as the oxidation temperature increased (from 892.4 to 1146.6 kgf/mm2). During oxidation in a longer time variant (72 h), layers with a higher hardness were obtained (1260 kgf/mm2). Studies on friction and wear characteristics of titanium were conducted using couples with ceramic balls (Al2O3, ZrO2) and with high-carbon steel (100Cr6) balls. The oxide films produced at a temperature range of 600–750 °C led to a reduction of the wear ratio value, with the lowest one obtained in tests with the 100Cr6 steel balls. Frictional contact of Al2O3 balls with an oxidized titanium disc resulted in a reduction of the wear ratio, but only for the oxide scales produced at 600 °C (24 h, 72 h) and 650 °C (24 h). For the ZrO2 balls, an increase in the wear ratio was observed, especially when interacting with the oxide films obtained after high-temperature oxidation at 650 °C or higher temperatures. The increase in wear intensity after titanium oxidation was also observed for the 100Cr6 steel balls.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


2020 ◽  
Vol 321 ◽  
pp. 05018
Author(s):  
Eri Miura-Fujiwara ◽  
Yuya Ogawa ◽  
Mitsuo Niinomi ◽  
Tohru Yamasaki

The authors proposed an oxide coating on Ti alloys for the dental abutment tooth, and they had reported that Ti–29Nb–13Ta–4.6Zr (TNTZ) alloy forms a dense oxide layer by high-temperature oxidation. On the other hand, CP Ti forms a multilayered oxide consisted of rutile monolayers and the void layer. This morphological change by alloying is supposed to be mainly caused by Nb addition in Ti since the dense oxide layer of TNTZ mainly consists of rutile TiO2 and TiNb2O7. Therefore, in this study, oxidation behaviors of various range of Nb content of Ti-xNb alloys (x = 1 ~ 32 mol%) were investigated, and exfoliation resistance was evaluated. And in this paper, the oxide/metal interfacial microstructure of oxidized CP Ti, TNTZ alloy, and Ti-Nb alloy was studied by a transmission electron microscopy (TEM) and by a scanning transmission electron microscopy with an electron dispersive spectroscopy (STEM-EDS). The cross-sectional observations suggested that the substrate was gradually oxidized during heat treatment, and nucleation and grain growth of TiO2 and TiNb2O7 proceed at the metal/oxide interface. Consequently, the gradual oxidation process in TNTZ and Ti-Nb alloys could lead to its continuous interfacial microstructure and dense oxide structure, which can achieve high exfoliation resistance.


Author(s):  
ZHAO ZHANG ◽  
JIANING LI ◽  
ZHIYUN YE ◽  
CAINIAN JING ◽  
MENG WANG ◽  
...  

In this paper, the high-temperature oxidation resistant coating on the TA15 titanium alloy by laser cladding (LC) of the KF110-B4C-Ag mixed powders was analyzed in detail. The scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) images indicated that a good metallurgy bond between the fabricated coating/TA15 was formed; also the fine/compact microstructure was produced after a cladding process. The oxidation mass gain of TA15 was higher than that of the coating after LC process, which were 3.72 and 0.91[Formula: see text]mg[Formula: see text]cm[Formula: see text], respectively, at 60[Formula: see text]h, greatly enhancing the high temperature oxidation resistance.


2020 ◽  
Vol 861 ◽  
pp. 83-88
Author(s):  
You Yang ◽  
Xiao Dong Wang

High temperature oxidation dynamic behaviors and mechanisms for 30Cr25Ni20Si heat-resistant steel were investigated at 800, 900 and 1000°C. The oxide layers were characterized by scanning electron microscopy (SEM-EDS), X-ray diffractometer (XRD). The results showed that the oxidation rate of test alloys is increased with increasing the oxidation time. The oxidation dynamic curves at 800 and 900°C follow from liner to parabolic oxidation law. The transition point is 10 h. At 1000°C, the steel exhibits a catastrophic oxidation, and the oxidation mass gain value at 50 h is 0.77 mg/cm2. This suggests that the steel at 900°C has formed a dense protective surface oxidation film, effectively preventing the diffusion of the oxygen atoms and other corrosive gas into the alloy. Therefore, at the first stage of oxidation, chemical adsorption and reaction determine the oxide film composition and formation process. At the oxide film growth stage, oxidation is controlled by migration of ions or electrons across the oxide film. When the spinel scale forms, it acts as a compact barrier for O element and improving the oxidation resistance.


2013 ◽  
Vol 333 ◽  
pp. 149-155 ◽  
Author(s):  
H. Fujikawa ◽  
Y. Iijima

The effect of grain size on high temperature oxidation behaviour of 316 steels at 700º, 850º and 1000°C in air was studied. The results show that the mass gain increases with the increase of grain size. Particularly, the gradient of mass gain is severe in at lower oxidation temperatures. In the oxidation at temperatures of more than the solid solution temperature, the grain size before the oxidation changed to coarse grain size. Therefore, in this case, it is not enough to estimate the oxidation behaviour by the grain size before the oxidation. The exfoliation of oxide scale is severe in steel with coarse grains. Over 850°C, the exfoliation was observed in 316 steel with coarse grains. At 1000°C, the oxide scale of 316 steel was exfoliated, but it was extreme in the coarse grains. Cr, Mn and Si in the oxide scale were enriched in the oxide scale of the steel with fine grains. Particularly, Si was remarkably enriched at the metal-oxide interface and grain boundaries.


2021 ◽  
Author(s):  
Renheng HAN ◽  
Ning LI ◽  
Ziming BAO ◽  
Xinjian HU ◽  
Hexin ZHANG ◽  
...  

A new type of hot working die steel was designed by using JMatPro, and high-temperature oxidation tests were carried out in the ambient atmosphere at 600 ℃ and 700 ℃. The heat treatment process and oxidation mechanism of the designed 4Cr4Mo2NiMnSiV steel were studied in detail. XRD, SEM and EDS were used to analyze the crystallographic phases, surface and cross-section morphologies of the oxide films. The results show that the main phases in the 4Cr4Mo2NiMnSiV steel were γ and α + δ. During the high-temperature oxidation, oxidation of the Fe outer layer and Cr inner layer occurred. After oxidation at 600℃, the surface oxidation layer comprised a monolayer with an uneven morphology. The surface oxide film had two layers after oxidation at 700℃. The outer oxide layer mainly contained Fe2O3 and Fe3O4, while the inner oxide layer mainly contained Cr2O3. The microstructure was relatively regular and had a significant effect on the protection of the metallic matrix. When oxidized, the 4Cr4Mo2NiMnSiV alloy steel easily formed protective layers, such as Cr2O3 and SiO2, so that the test steel had excellent oxidation resistance at high temperatures.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 668 ◽  
Author(s):  
Mihaela Raluca Condruz ◽  
Gheorghe Matache ◽  
Alexandru Paraschiv ◽  
Teodor Badea ◽  
Viorel Badilita

The high-temperature oxidation behavior of selective laser melting (SLM) manufactured IN 625 was studied over 96 h of exposure at 900 °C and 1050 °C in air. An extensive analysis was performed to characterize the oxide scale formed and its evolution during the 96 h, including mass gain analysis, EDS, XRD, and morphological analysis of the oxide scale. The mass gain rate of the bare material increases rapidly during the first 8 h of temperature holding and diminishes at higher holding periods for both oxidation temperatures. High-temperature exposure for short periods (24 h) follows a parabolic law and promotes the precipitation of δ phase, Ni-rich intermetallics, and carbides. Within the first 24 h of exposure at 900 °C, a Cr2O3 and a (Ni, Fe)Cr2O4 spinel scale were formed, while at a higher temperature, a more complex oxide was registered, consisting of (Ni, Fe)Cr2O4, Cr2O3, and rutile-type oxides. Prolonged exposure of IN 625 at 900 °C induces the preservation of the Cr2O3 scale and the dissolution of carbides. Other phases and intermetallics, such as γ, δ phases, and MoNi4 are still present. The exposure for 96 h at 1050 °C led to the dissolution of all intermetallics, while the same complex oxide scale was formed.


Sign in / Sign up

Export Citation Format

Share Document