scholarly journals Space filling by nucleation and growth in chemical vapor deposition of diamond

1996 ◽  
Vol 11 (3) ◽  
pp. 716-726 ◽  
Author(s):  
J. Stiegler ◽  
Y. von Kaenel ◽  
M. Cans ◽  
E. Blank

Phase transformations, including chemical vapor deposition (CVD) of diamond, taking place by nucleation and growth are commonly described by Avrami or Johnson-Mehl type models. In order to avoid the restrictions of such models with respect to assumptions concerning nucleation rates and growth velocities, the variation with time of nucleation and growth of diamond particles during the deposition of microwave plasma-assisted CVD was studied. The size distributions obtained from image analysis enabled us to trace back details of the nucleation and growth history. Three sources of particle formation were operating during deposition. A general growth law suitable for all particles did not exist. These observations limited the applicability of Avrami-type models to describe space filling. Computer simulation of surface coverage and particle growth was successful because one particular mode of particle formation and growth dominated surface coverage. Based on image analysis and the determination of the film growth rate, the evolution of the diamond volume fraction with time, starting from three-dimensional particle growth followed by a continuous transition to one-dimensional film growth, was described.

2000 ◽  
Vol 648 ◽  
Author(s):  
M.P. Singh ◽  
S. Mukhopadhayay ◽  
Anjana Devi ◽  
S.A. Shivashankar

AbstractWe have studied the nucleation and growth of alumina by metalorganic chemical vapor deposition (MOCVD). The deposition of alumina films was carried out on Si(100) in a horizontal, hot-wall, low pressure chemical vapor deposition (CVD) reactor, using aluminum acetylacetonate{Al(acac)3}as the CVD precursor. We have investigated growth of alumina films as a function of different CVD parameters such as substrate temperature and total reactor pressure during film growth. Films were characterized by optical microscopy, X-ray diffractometry (XRD), scanning electron microscopy (SEM), cross-sectional SEM, and secondary ion mass spectrometry (SIMS) compositional depth profiling. The chemical analysis reveals that the carbon is present throughout the depth of the films.


2007 ◽  
Vol 22 (5) ◽  
pp. 1275-1280 ◽  
Author(s):  
Y. Morikawa ◽  
M. Hirai ◽  
A. Ohi ◽  
M. Kusaka ◽  
M. Iwami

We have studied the heteroepitaxial growth of 3C–SiC film on an Si(100) substrate by plasma chemical vapor deposition using monomethylsilane, a single-molecule gas containing both Si and C atoms. We have tried to introduce an interval process, in which we decrease the substrate temperature for a few minutes at a suitable stage of film growth. It was expected that, during the interval process, stabilization such as desorption of nonreacted precursors and lateral diffusion of species produced at the initial stage of film growth would occur. From the results, it appears that the interval process using a substrate temperature of 800 °C effectively suppresses polycrystallization of 3C–SiC growth on the Si(100) surface


1987 ◽  
Vol 105 ◽  
Author(s):  
T. Inushima ◽  
N. Hirose ◽  
K. Urata ◽  
K. Ito ◽  
S. Yamazaki

AbstractThe photo-chemical vapor deposition (CVD) of SiO2 and SiN2 were investigated using 185 nm light of a low pressure mercury lamp. The film thickness deposited on the substrate was the function of the distance from the substrate to the light source and its relation was investigated by changing the reaction pressure. From these investigations, the space migration length of the active species was estimated, which was, at the processing pressure of 400 Pa, about 10–20 mm. This migration length was confirmed by a model calculation. The step coverage of the film was investigated by the use of a two-dimensional capillary cavity. It was shown that the thickness decayed exponentially with the depth in the cavity. The decay constant did not show temperature dependence. From this result, the surface migration of the active species produced by photo-CVD was reported. To confirm this migration we presented a substrate- size effect of photo-CVD, which became obvious when the substrate size became smaller than the space migration length of the active species. From these results, the film growth mechanism of photo-CVD was discussed.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Weihua Wang ◽  
Bing Dai ◽  
Guoyang Shu ◽  
Yang Wang ◽  
Benjian Liu ◽  
...  

Diamond nucleation on iridium (001) substrates was investigated under different bias conditions. High-density epitaxial nucleation can be obtained in a narrow bias window. This paper reports both the typical nucleation...


Sign in / Sign up

Export Citation Format

Share Document