Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices

1997 ◽  
Vol 12 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Bharat Bhushan ◽  
Xiaodong Li

Microelectromechanical systems (MEMS) devices are made of doped single-crystal silicon, LPCVD polysilicon films, and other ceramic films. Very little is understood about tribology and mechanical characterization of these materials on micro- to nanoscales. Micromechanical and tribological characterization of p-type (lightly boron-doped) single-crystal silicon (referred to as “undoped”), p+-type (boron doped) single-crystal silicon, polysilicon bulk, and n+-type (phosphorous doped) LPCVD polysilicon films have been carried out. Hardness, elastic modulus, and scratch resistance of these materials were measured by nanoindentation and microscratching using a nanoindenter. Friction and wear properties were measured using an accelerated ball-on-flat tribometer. It is found that the undoped silicon and polysilicon bulk as well as n+-type polysilicon film exhibit higher hardness and elastic modulus than the p+-type silicon. The polysilicon bulk and n+-type polysilicon film exhibit the lowest friction and highest resistance to scratch and wear followed by the undoped silicon and with the poorest behavior of the p+-type silicon. During scratching, the p+-type silicon deforms like a ductile metal.

Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


Author(s):  
Timothy S. English ◽  
Leslie M. Phinney ◽  
Patrick E. Hopkins ◽  
Justin R. Serrano

Accurate thermal conductivity values are essential to the modeling, design, and thermal management of microelectromechanical systems (MEMS) and devices. However, the experimental technique best suited to measure thermal conductivity, as well as thermal conductivity itself, varies with the device materials, fabrication conditions, geometry, and operating conditions. In this study, the thermal conductivity of boron doped single-crystal silicon-on-insulator (SOI) microbridges is measured over the temperature range from 77 to 350 K. The microbridges are 4.6 mm long, 125 μm tall, and two widths, 50 or 85 μm. Measurements on the 85 μm wide microbridges are made using both steady-state electrical resistance thermometry and optical time-domain thermoreflectance. A thermal conductivity of ∼ 77 W/mK is measured for both microbridge widths at room temperature, where both experimental techniques agree. However, a discrepancy at lower temperatures is attributed to differences in the interaction volumes and in turn, material properties, probed by each technique. This finding is qualitatively explained through Boltzmann transport equation modeling under the relaxation time approximation.


Sign in / Sign up

Export Citation Format

Share Document