Microtribological studies of doped single-crystal silicon and polysilicon films for MEMS devices

1996 ◽  
Vol 57 (2) ◽  
pp. 91-102 ◽  
Author(s):  
Bharat Bhushan ◽  
Vilas N. Koinkar
2005 ◽  
Vol 297-300 ◽  
pp. 292-298 ◽  
Author(s):  
Satoru Koyama ◽  
Kazuki Takashima ◽  
Yakichi Higo

Reliability is one of the most critical issues for designing practical MEMS devices. In particular, the fracture toughness of micro-sized MEMS elements is important, as micro/nano-sized flaws can act as a crack initiation sites to cause failure of such devices. Existing MEMS devices commonly use single crystal silicon. Fracture toughness testing upon micro-sized single crystal silicon was therefore carried out to examine whether a fracture toughness measurement technique, based upon the ASTM standard, is applicable to 1/1000th sized silicon specimens. Notched cantilever beam type specimens were prepared by focused ion beam machining. Two specimens types with different notch orientations were prepared. The notch plane/direction were (100)/[010], and (110)/[ _ ,110], respectively. Fracture toughness tests were carried out using a mechanical testing machine for micro-sized specimens. Fracture has been seen to occur in a brittle manner in both orientations. The provisional fracture toughness values (KQ) are 1.05MPam1/2 and 0.96MPam1/2, respectively. These values meet the micro-yielding criteria for plane strain fracture toughness values (KIC). Fracture toughness values for the orientations tested are of the same order as values in the literature. The results obtained in this investigation indicate that the fracture toughness measurement method used is applicable for micro-sized components of single crystal silicon in MEMS devices.


2011 ◽  
Vol 35 (3) ◽  
pp. 406-415
Author(s):  
Alexander Sprunt ◽  
Alexander Slocum ◽  
Jeffrey H. Lang

1990 ◽  
Vol 182 ◽  
Author(s):  
B. Raicu ◽  
M.I. Current ◽  
W.A. Keenan ◽  
D. Mordo ◽  
R. Brennan ◽  
...  

AbstractHighly conductive p+-polysilicon films were fabricated over Si(100) and SiO2 surfaces using high-dose ion implantation and rapid thermal annealing. Resistivities close to that of single crystal silicon were achieved. These films were characterized by a variety of electrical and optical techniques as well as SIMS and cross-section TEM.


2009 ◽  
Vol 18 (6) ◽  
pp. 1469-1469
Author(s):  
Alissa M. Fitzgerald ◽  
David M. Pierce ◽  
Brent M. Huigens ◽  
Carolyn D. White

2008 ◽  
Vol 48 (8-9) ◽  
pp. 1245-1247 ◽  
Author(s):  
A. Neels ◽  
A. Dommann ◽  
A. Schifferle ◽  
O. Papes ◽  
E. Mazza

1997 ◽  
Vol 12 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Bharat Bhushan ◽  
Xiaodong Li

Microelectromechanical systems (MEMS) devices are made of doped single-crystal silicon, LPCVD polysilicon films, and other ceramic films. Very little is understood about tribology and mechanical characterization of these materials on micro- to nanoscales. Micromechanical and tribological characterization of p-type (lightly boron-doped) single-crystal silicon (referred to as “undoped”), p+-type (boron doped) single-crystal silicon, polysilicon bulk, and n+-type (phosphorous doped) LPCVD polysilicon films have been carried out. Hardness, elastic modulus, and scratch resistance of these materials were measured by nanoindentation and microscratching using a nanoindenter. Friction and wear properties were measured using an accelerated ball-on-flat tribometer. It is found that the undoped silicon and polysilicon bulk as well as n+-type polysilicon film exhibit higher hardness and elastic modulus than the p+-type silicon. The polysilicon bulk and n+-type polysilicon film exhibit the lowest friction and highest resistance to scratch and wear followed by the undoped silicon and with the poorest behavior of the p+-type silicon. During scratching, the p+-type silicon deforms like a ductile metal.


Author(s):  
Bharat Bhushan ◽  
Sriram Sundararajan ◽  
Xiaodong Li ◽  
Christian A. Zorman ◽  
Mehran Mehregany

Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


Sign in / Sign up

Export Citation Format

Share Document