Possible evidence for the stabilization of β–carbon nitride by high-energy ball milling

1999 ◽  
Vol 14 (6) ◽  
pp. 2488-2499 ◽  
Author(s):  
Y. Fahmy ◽  
T. D. Shen ◽  
D. A. Tucker ◽  
R. L. Spontak ◽  
C. C. Koch

The possibility of stabilizing the theoretically predicted β–C3N4 phase by high-energy ball milling is investigated. Charges of graphitic carbon were milled with and without minor alloying additions under different atmospheric media, namely gas and/or liquid phases of nitrogen, air, or ammonia. Milling was performed at either of two energy levels for periods of up to 48 h. The β–C3N4 phase was found to exist as small crystallites in a matrix of primarily amorphous carbon at volume fractions estimated between 5 and 10 at.%. High-resolution electron diffraction and x-ray diffraction indicate that the crystalline nature of the C3N4 phase corresponds with a hexagonal lattice with a = 6.46 Å and c/a = 0.374, which are within 2% of the theoretically calculated lattice parameter values. Analysis of electron energy-loss spectroscopy (EELS), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectra verify the presence of chemically bonded carbon and nitrogen with chemical states reflecting combined sp2 and sp3 hybridization. Chemical analysis confirms nitrogen enrichment at levels consistent with the C3N4 stoichiometry and the estimated degree of stabilization. The possible mechanism(s) responsible for the stabilization of the β–C3N4 phase are briefly discussed.

2011 ◽  
Vol 319-320 ◽  
pp. 61-63 ◽  
Author(s):  
Xiu Yan Guo ◽  
Guo Jin Ma ◽  
Shi Kun Xie ◽  
Rong Xi Yi ◽  
Zhi Gao

Cu-4% mixed-powder consisting of rough copper powder and graphite powder was separately mechanical alloyed by high-energy ball milling. The phases and micrograph of these powders were determined by X-ray diffraction and scanning electron microscopy (SEM). The results show an increase in the lattice parameter of copper with milling times, up to a saturation value of about 24h; There was an absence of graphite reflections from X-ray diffractograms after longer milling times.


2011 ◽  
Vol 121-126 ◽  
pp. 1049-1052
Author(s):  
Xiu Yan Guo ◽  
Guo Jin Ma ◽  
Shi Kun Xie ◽  
Rong Xi Yi

Cu-4%C mixed-powder consisting of rough copper powder and graphite powder was separately mechanical alloyed by high energy ball milling. The phases and micrograph of these powders were determined by X-ray diffraction and scanning electron microscopy (SEM). The results show that increase of the lattice parameter of copper with milling times, up to a saturation value of about 24h; The absence of graphite reflections in X-ray diffract grams for longer milling times.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 728
Author(s):  
Roberto Gómez Batres ◽  
Zelma S. Guzmán Escobedo ◽  
Karime Carrera Gutiérrez ◽  
Irene Leal Berumen ◽  
Abel Hurtado Macias ◽  
...  

Air plasma spray technique (APS) is widely used in the biomedical industry for the development of HA-based biocoatings. The present study focuses on the influence of powder homogenization treatment by high-energy ball milling (HEBM) in developing a novel hydroxyapatite-barium titanate (HA/BT) composite coating deposited by APS; in order to compare the impact of the milling process, powders were homogenized by mechanical stirring homogenization (MSH) too. For the two-homogenization process, three weight percent ratios were studied; 10%, 30%, and 50% w/w of BT in the HA matrix. The phase and crystallite size were analyzed by X-ray diffraction patterns (XRD); the BT-phase distribution in the coating was analyzed by backscattered electron image (BSE) with a scanning electron microscope (SEM); the energy-dispersive X-ray spectroscopy (EDS) analysis was used to determinate the Ca/P molar ratio of the coatings, the degree of adhesion (bonding strength) of coatings was determinate by pull-out test according to ASTM C633, and finally the nanomechanical properties was determinate by nanoindentation. In the results, the HEBM powder processing shows better efficiency in phase distribution, being the 30% (w/w) of BT in HA matrix that promotes the best bonding strength performance and failure type conduct (cohesive-type), on the other hand HEBM powder treatment promotes a slightly greater crystal phase stability and crystal shrank conduct against MSH; the HEBM promotes a better behavior in the nanomechanical properties of (i) adhesive strength, (ii) cohesive/adhesive failure-type, (iii) stiffness, (iv) elastic modulus, and (v) hardness properties.


2011 ◽  
Vol 311-313 ◽  
pp. 1281-1285 ◽  
Author(s):  
Pei Hao Lin ◽  
Lei Wang ◽  
Shun Kang Pan ◽  
Hua Mei Wan

The NdFe magnetic absorbing materials were prepared by rapid solidification and high-energy ball milling method. The effect of high-energy ball milling on particle morphology, organizational structure and microwave absorbing properties of NdFe magnetic absorbing materials were analyzed with the aid of X-ray diffractometer, scanning electron microscope and vector network analysis. The results show that the Nd2Fe17 and α-Fe phase are refined, the particles become smaller and thinner; the span-ratio of the particles increases along with time during the process of high-energy ball milling; and meanwhile, the frequency of absorbing peak reduces. The absorbing bandwidth broadens as the increase of the time of ball milling, except that of 48h.The minimum reflectance of the powder decreases from -22dB to - 44dB under the circumstances that the time of high energy ball milling reaches 48h and the thickness of the microwave absorbing coating is 1.5mm. But it rebounds to about - 6dB when the time of ball milling reaches 72h.


2006 ◽  
Vol 168 (1-3) ◽  
pp. 1057-1063 ◽  
Author(s):  
Ligia E. Zamora ◽  
G. A. Perez Alcazar ◽  
J. M. Greneche ◽  
S. Suriñach

1998 ◽  
Vol 524 ◽  
Author(s):  
J.-H. He ◽  
P. J. Schilling ◽  
E. Ma

ABSTRACTAn X-ray absorption beamline has been developed recently at the electron storage ring of the LSU Center for Advanced Microstructures and Devices. Using Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES), we have studied the local atomic environments in immiscible mixtures processed by high-energy ball milling, a mechanical alloying technique involving heavy deformation. By examining the local coordination and bond distances, it is concluded that atomic-level alloying can indeed be induced between Cu and Fe through milling at room temperature, forming substitutional fcc and bcc solid solutions. In addition to single-phase regions, a two-phase region consisting of fcc/bcc solutions has been found after milling at both room temperature and liquid nitrogen temperature. In contrast to the Cu-Fe system, solid solution formation is not detectable in milled Ag-Fe and Cu-Ta mixtures. This work demonstrates the power of synchrotron EXAFS/XANES experiments in monitoring nonequilibrium alloying on the atomic level. At the same time, the results provide direct experimental evidence of the capability as well as limitations of high-energy ball milling to form alloys in positive-heat-of-mixing systems.


2006 ◽  
Vol 510-511 ◽  
pp. 698-701
Author(s):  
Pyuck Pa Choi ◽  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Dae Hwan Kwon

Mechanically induced crystallization of an amorphous Fe90Zr10 alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under high-energy ball-milling in an AGO-2 mill, melt-spun Fe90Zr10 ribbons undergo crystallization into BCC α- Fe(Zr). Zr atoms are found to be solved in the Fe(Zr) grains up to a maximum supersaturation of about 3.5 at.% Zr, where it can be presumed that the remaining Zr atoms are segregated in the grainboundaries. The decomposition degree of the amorphous phase increases with increasing milling time and intensity. It is proposed that the observed crystallization is deformation-induced and rather not attribute to local temperature rises during ball-collisions.


Sign in / Sign up

Export Citation Format

Share Document