Thermophysical properties of zirconium at high temperature

1999 ◽  
Vol 14 (9) ◽  
pp. 3713-3719 ◽  
Author(s):  
Paul-François Paradis ◽  
Won-Kyu Rhim

Six thermophysical properties of both solid and liquid zirconium measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory are presented. These properties are density, thermal expansion coefficient, constant pressure heat capacity, hemispherical total emissivity, surface tension, and viscosity. For the first time, we report the densities and the thermal expansion coefficients of both the solid as well as liquid Zr over wide ranges of temperatures. Over the 1700–2300 K temperature span, the liquid density can be expressed as ρ1(T) = 6.24 × 103 – 0.29(T – Tm) kg/m3 with Tm = 2128 K, and the corresponding volume expansion coefficient as α1 = 4.6 × 10−5/K. Similarly, over the 1250–2100 K range, the measured density of the solid can be expressed as ρs(T) = 6.34 × 103 – 0.15(T – Tm), giving a volume expansion coefficient αs = 2.35 × 10−5/K. The constant pressure heat capacity of the liquid phase could be estimated as Cpl(T) = 39.72 – 7.42 × 10−3(T – Tm) J/(mol/K) if the hemispherical total emissivity of the liquid phase εT1 remains constant at 0.3 over the 1825–2200 K range. Over the 1400–2100 K temperature span, the hemispherical total emissivity of the solid phase could be rendered as εTs(T) = 0.29 – 9.91 × 103 (T – Tm). The measured surface tension and the viscosity of the molten zirconium over the 1850–2200 K range can be expressed as ς(T) = 1.459 × 103 – 0.244 (T – Tm) mN/m and as η(T) = 4.83 – 5.31 × 10−3(T – Tm) mPa s, respectively.

2004 ◽  
Vol 19 (2) ◽  
pp. 590-594 ◽  
Author(s):  
P-F. Paradis ◽  
T. Ishikawa ◽  
S. Yoda

Several thermophysical properties of liquid and supercooled ruthenium were measured using electrostatic levitation. Over the 2225–2775 K temperature interval, the density can be expressed as ρ(T) = 10.75 × 103 – 0.56(T – Tm)(kg ⋅ m−3) with Tm = 2607 K. In addition, the surface tension can be expressed as σ(T) = 2.26 × 103 – 0.24(T – Tm)(mN ⋅ m−1) and the viscosity as η(T) = 0.60 exp[4.98 × 104/(RT)] (mPa ⋅ s) over the 2450–2725 K range. The isobaric heat capacity was estimated as CP(T) = 35.9 + 1.1 × 10−3(T – Tm)[(J/(mol K)] over the 2200–2750 K span by assuming a constant emissivity. The volume expansion coefficient, the enthalpy, and the entropy of fusion were also calculated as 5.2 × 10−5 K−1, 29.2 kJ ⋅ mol−1, and 11.2 J/(mol K).


2018 ◽  
Vol 60 (5) ◽  
pp. 964
Author(s):  
Zhiqin Wen ◽  
Yuhong Zhao ◽  
Hua Hou ◽  
Liwen Chen

AbstractFirst-principles calculations are performed to investigate lattice parameters, elastic constants and 3D directional Young’s modulus E of nickel silicides (i.e., β-Ni_3Si, δ-Ni_2Si, θ-Ni_2Si, ε-NiSi, and θ-Ni_2Si), and thermodynamic properties, such as the Debye temperature, heat capacity, volumetric thermal expansion coefficient, at finite temperature are also explored in combination with the quasi-harmonic Debye model. The calculated results are in a good agreement with available experimental and theoretical values. The five compounds demonstrate elastic anisotropy. The dependence on the direction of stiffness is the greatest for δ-Ni_2Si and θ-Ni_2Si, when the stress is applied, while that for β-Ni_3Si is minimal. The bulk modulus B reduces with increasing temperature, implying that the resistance to volume deformation will weaken with temperature, and the capacity gradually descend for the compound sequence of β-Ni_3Si > δ-Ni_2Si > θ-Ni_2Si > ε-NiSi > θ-Ni_2Si. The temperature dependence of the Debye temperature ΘD is related to the change of lattice parameters, and ΘD gradually decreases for the compound sequence of ε-NiSi > β-Ni_3Si > δ-Ni_2Si > θ-Ni_2Si > θ-Ni_2Si. The volumetric thermal expansion coefficient αV, isochoric heat capacity and isobaric heat capacity C _ p of nickel silicides are proportional to T ^3 at low temperature, subsequently, αV and C _ p show modest linear change at high temperature, whereas C _v obeys the Dulong-Petit limit. In addition, β-Ni_3Si has the largest capability to store or release heat at high temperature. From the perspective of solid state physics, the thermodynamic properties at finite temperature can be used to guide further experimental works and design of novel nickel–silicon alloys.


1990 ◽  
Vol 5 (3) ◽  
pp. 152-154 ◽  
Author(s):  
L. Boon ◽  
H. de Jonge Baas ◽  
R. Metselaar

AbstractThe temperature dependence of the cell parameters is given for Bi2Mo3O12, Bi2Mo2O9, γ-Bi2MoO6 and γ'-Bi2MoO6, and the volume expansion coefficient is derived. A description is given of a high-temperature diffractometer (HTD) for temperatures up to about 1600°C in controlled atmospheres.


1985 ◽  
Vol 38 (4) ◽  
pp. 617 ◽  
Author(s):  
JG Collins ◽  
SJ Collocott ◽  
GK White

The linear thermal expansion coefficient a from 2 to 100 K and heat capacity per gram cp from 0�3 to 30 K are reported for fully-stabilized zirconia containing a nominal 16 wt.% (9 mol.%) of yttria. The heat capacity below 7 K has been analysed into a linear (tunnelling?) term, a Schottky term centred at 1�2 K, a Debye term (e~ = 540 K), and a small T5 contribution. The expansion coefficient is roughly proportional to T from 5 to 20 K and gives a limiting lattice Griineisen parameter 'Yo ::::: 5, which agrees with that calculated from elastic data.


2021 ◽  
Vol 245 ◽  
pp. 03003
Author(s):  
Zhaowen Huang ◽  
Benjing Chen ◽  
Jingyang Li ◽  
Lingzhi Zhao

In this paper, based on the first principle method, the mechanism of lithium intercalation and deintercalation of P-Cu alloy as anode material of lithium-ion battery was studied. The results followed that the volume expansion coefficient of Li-P-Cu is small, 59.4650% for Li2PCu3 and 61.4071% for Li2P2Cu, indicating that the introduction of Cu can effectively inhibit the volume expansion of phosphorus. And PCu3 is superior to P2Cu in terms of volume expansion coefficient and lithium intercalation formation energy and good conductivity.


Author(s):  
Jianhua Yu ◽  
Huayu Zhao ◽  
Shunyan Tao ◽  
Xiaming Zhou ◽  
Chuanxian Ding

Plasma-sprayed thermal barrier coating (TBC) systems are widely used in gas turbine blades to increase turbine entry temperature (TET) and better efficiency. Yttria stabilized zirconia (YSZ) has been the conventional thermal barrier coating material because of its low thermal conductivity, relative high thermal expansion coefficient and good corrosion resistance. However the YSZ coatings can hardly fulfill the harsh requirements in future for higher reliability and the lower thermal conductivity at higher temperatures. Among the interesting TBC candidates, materials with pyrochlore structure show promising thermo-physical properties for use at temperatures exceeding 1200 °C. Sm2Zr2O7 bulk material does not only have high temperature stability, sintering resistance but also lower thermal conductivity and higher thermal expansion coefficient. The sintering characteristics of ceramic thermal barrier coatings under high temperature conditions are complex phenomena. In this paper, samarium zirconate (Sm2Zr2O7, SZ) powder and coatings were prepared by solid state reaction and atmosphere plasma spraying process, respectively. The microstructure development of coatings derived from sintering after heat-treated at 1200–1500 °C for 50 h have been investigated. The microstructure was examined by scanning electron microscopy (SEM) and the grain growth was analyzed in this paper as well.


2020 ◽  
Vol 834 ◽  
pp. 155153 ◽  
Author(s):  
R.I. Gulyaeva ◽  
S.A. Petrova ◽  
V.M. Chumarev ◽  
E.N. Selivanov

Sign in / Sign up

Export Citation Format

Share Document