Thermophysical properties of liquid and supercooled ruthenium measured by noncontact methods

2004 ◽  
Vol 19 (2) ◽  
pp. 590-594 ◽  
Author(s):  
P-F. Paradis ◽  
T. Ishikawa ◽  
S. Yoda

Several thermophysical properties of liquid and supercooled ruthenium were measured using electrostatic levitation. Over the 2225–2775 K temperature interval, the density can be expressed as ρ(T) = 10.75 × 103 – 0.56(T – Tm)(kg ⋅ m−3) with Tm = 2607 K. In addition, the surface tension can be expressed as σ(T) = 2.26 × 103 – 0.24(T – Tm)(mN ⋅ m−1) and the viscosity as η(T) = 0.60 exp[4.98 × 104/(RT)] (mPa ⋅ s) over the 2450–2725 K range. The isobaric heat capacity was estimated as CP(T) = 35.9 + 1.1 × 10−3(T – Tm)[(J/(mol K)] over the 2200–2750 K span by assuming a constant emissivity. The volume expansion coefficient, the enthalpy, and the entropy of fusion were also calculated as 5.2 × 10−5 K−1, 29.2 kJ ⋅ mol−1, and 11.2 J/(mol K).

1999 ◽  
Vol 14 (9) ◽  
pp. 3713-3719 ◽  
Author(s):  
Paul-François Paradis ◽  
Won-Kyu Rhim

Six thermophysical properties of both solid and liquid zirconium measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory are presented. These properties are density, thermal expansion coefficient, constant pressure heat capacity, hemispherical total emissivity, surface tension, and viscosity. For the first time, we report the densities and the thermal expansion coefficients of both the solid as well as liquid Zr over wide ranges of temperatures. Over the 1700–2300 K temperature span, the liquid density can be expressed as ρ1(T) = 6.24 × 103 – 0.29(T – Tm) kg/m3 with Tm = 2128 K, and the corresponding volume expansion coefficient as α1 = 4.6 × 10−5/K. Similarly, over the 1250–2100 K range, the measured density of the solid can be expressed as ρs(T) = 6.34 × 103 – 0.15(T – Tm), giving a volume expansion coefficient αs = 2.35 × 10−5/K. The constant pressure heat capacity of the liquid phase could be estimated as Cpl(T) = 39.72 – 7.42 × 10−3(T – Tm) J/(mol/K) if the hemispherical total emissivity of the liquid phase εT1 remains constant at 0.3 over the 1825–2200 K range. Over the 1400–2100 K temperature span, the hemispherical total emissivity of the solid phase could be rendered as εTs(T) = 0.29 – 9.91 × 103 (T – Tm). The measured surface tension and the viscosity of the molten zirconium over the 1850–2200 K range can be expressed as ς(T) = 1.459 × 103 – 0.244 (T – Tm) mN/m and as η(T) = 4.83 – 5.31 × 10−3(T – Tm) mPa s, respectively.


2021 ◽  
Vol 245 ◽  
pp. 03003
Author(s):  
Zhaowen Huang ◽  
Benjing Chen ◽  
Jingyang Li ◽  
Lingzhi Zhao

In this paper, based on the first principle method, the mechanism of lithium intercalation and deintercalation of P-Cu alloy as anode material of lithium-ion battery was studied. The results followed that the volume expansion coefficient of Li-P-Cu is small, 59.4650% for Li2PCu3 and 61.4071% for Li2P2Cu, indicating that the introduction of Cu can effectively inhibit the volume expansion of phosphorus. And PCu3 is superior to P2Cu in terms of volume expansion coefficient and lithium intercalation formation energy and good conductivity.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Lei Tang ◽  
Tongyao Zhang ◽  
Baogang Li ◽  
Lu Zhang ◽  
Dong Han

In this paper, there are nine oil samples to explore the characteristics of formation oil at different CO2 injection rate, and the characteristics include bubble point pressure, volume expansion coefficient, viscosity, density, and average molecular weight, composition of gas and liquid phase, and asphalt sediment. According to the experimental results of early nine oil samples of swelling tests, in high temperature and high pressure conditions, characteristics and changing rules of properties of formation oil, including bubble point pressure, volume expansion coefficient, viscosity, density, and average molecular weight, composition of gas and liquid phase, and asphalt sediment, were evaluated and analyzed at different CO2 injection rate systematically. The research not only can provide guides for petroleum engineers when they need to adjust the injection and production programs, but also can provide comparatively comprehensive experimental rules for researches on enhanced oil recovery (EOR) mechanisms of gas miscible and nonmiscible flooding. Moreover, phase parameters of different formation oil system can be extracted for reservoir numerical simulation.


1984 ◽  
Vol 39 (6) ◽  
pp. 685-686
Author(s):  
Seymour Steven Brody

Effects of temperature on the spectral properties of chlorophyll in solution and in micelles are reported. After correcting for the volume expansion coefficient of the solvent, it is observed that temperature has no detectable effects on the spectral properties of chlorophyll (between 14 °C to 35 °C). Solutions examined include acetone, chloroform and ethyl alcohol. It is concluded that the temperature induced change in refractive index, of the solvent, has no significant affect on the chlorophyll spec­trum. In micelles containing chlorophyll there are significant temperature induced spectral changes. Heating and cooling results in an irreversible redistribution of monomeric and oligomeric forms of chlorophyll.


2018 ◽  
Vol 2 (1) ◽  
pp. 43-48
Author(s):  
Meta Yantidewi ◽  
Tjipto Prastowo ◽  
Alimufi Arief

The objective of this research was to determine the volume expansion coefficient of vegetable oil and water as the effective way to study the fluids’ properties when they are heated. The vegetable oil used in this research is the unused vegetable oil of Filma, while the water used in this study is distilled water. The main instrument in this study is the dilatometer which works based on the principle of fluids expansion. The research methods adopted the methods of the previous researchers, in which the experiment of fluids volume expansion had been conducted in two stages for each fluids (in this case, the fluids were vegetable oil and water). The first stage was heating fluids indirectly through absorbed and distributed heat by an amount of water inside the boiling jug. In the second stage, the heat source was stopped and fluids were allowed to continue expanding in volume due to the rising temperature before the fluids finally experiencing volume contraction due to the decrease in temperature. When the cooling process was carried out, observation and recording of data of fluid column length in glass pipe as a function of temperature were held. Based on those data, the changes in fluids volume due to the cooling process could be estimated. By utilizing the linear relation between volume change and temperature change, the volume expansion coefficient values of vegetable oil and water were (7,2 ± 0,2) x 10-4/0C and (3,2 ± 0,2) x 10-4/0C within the limits of the accuracy of the measuring instrument used in the study.


Sign in / Sign up

Export Citation Format

Share Document