Synthesis and thermoelectric properties of p-type barium-filled skutterudite BayFexCo4−xSb12

2002 ◽  
Vol 17 (11) ◽  
pp. 2953-2959 ◽  
Author(s):  
X. F. Tang ◽  
L. D. Chen ◽  
T. Goto ◽  
T. Hirai ◽  
R. Z. Yuan

Single-phase barium-filled skutterudite compounds, BayFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.7), were synthesized by a two-step solid-state reaction method. The maximum filling fraction of Ba (ymax) in BayFexCo4–xSb12 increased with increasing Fe content and was found to be rather greater than that of CeyFexCo4–xSb12. The ymax varied from 0.35 to near 1.0 when Fe content changed from 0 to 4.0. BayFexCo4–xSb12 showed p-type conduction at a composition range of x = 0 to 3.0, y = 0 to 0.7. Carrier concentration and electrical conductivity increased with increasing Fe content and decreased with increasing Ba filling fraction. The Seebeck coefficient increased with increasing Ba filling fraction and with decreasing Fe content. Lattice thermal conductivity decreased with increasing Ba filling fraction and reached a minimum at a certain Ba filling fraction (y = 0.3 to 0.4). The greatest ZT value of 0.9 was obtained at 750 K for p-type Ba0.27Fe0.98Co3.02Sb12. It is expected that further investigation on the optimization of filling fraction would result in a higher ZT value at the moderately low Fe content region.

2000 ◽  
Vol 15 (11) ◽  
pp. 2276-2279 ◽  
Author(s):  
L. Chen ◽  
X. Tang ◽  
T. Goto ◽  
T. Hirai

Ba-filled skutterudite compounds, BayFexCo4−xSb12, were synthesized by a two-step solid reaction method. A binary compound of Sb3Ba and a ternary compound of FexCo1−xSb2 were first synthesized at 900 and 973 K, respectively. The presynthesized Sb3Ba and FexCo1−xSb2 were then mixed with Sb and heated at 973 K in an Ar atmosphere. The resulting powder was of single phase with a composition of BayFexCo4−xSb12, having skutterudite structure with the Sb–dodecahedron voids fractionally filled by Ba. The lattice constant of BayFexCo4−xSb12 increased with Ba and Fe content. The maximum filling fraction of Ba (ymax) in BayFexCo4−xSb12 was found to be greater than that of Ce or La in LnyFexCo4−xSb12, especially in the lower Fe content region. The ymax varied from 0.35 to near 1.0 when Fe content (x) changed from 0 to 4.


2007 ◽  
Vol 336-338 ◽  
pp. 838-841
Author(s):  
Han Li ◽  
Xin Feng Tang ◽  
Tao Xiang Liu ◽  
Chen Song ◽  
Qing Jie Zhang

Single-phase double atoms filling skutterudite compounds were synthesized by using melting reaction method. The effects of double atoms filling on the structure and lattice thermal conductivity of skutterudite compounds were investigated. The results of Rietveld refinement indicate that CamCenFexCo4-xSb12 compounds possess skutterudite structure and the Sb-icosahedron voids have been partially filled with filling atoms. With the same filling fraction, the lattice thermal conductivity of CamCenFexCo4-xSb12 is smaller than that of CamFexCo4-xSb12 and CenFexCo4-xSb12, furthermore, when the total filling fraction (m+n) is about 0.3 and respective filling fraction of Ca and Ce are approximately equal, the lattice thermal conductivity is the least.


2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.


2016 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi1.8Ce0.2Nb2O9 (SBCN) and SrBi1.8Ce0.2Ta2O9 (SBCT) powders were prepared via solid-state reaction method. X-ray diffraction analysis reveals that the SBCN and SBCT powders have the single phase orthorhom-bic Aurivillius structure at room temperature. The contribution of Raman scattering and FTIR spectroscopy of these samples were relatively smooth and resemble each other. The calcined powders were uniaxially pressed and sintered at 1250?C for 8 h to obtaine dense ceramics. Dielectric constant, loss tangent and AC conductivity of the sintered Ce-doped SrBi2Nb2O9 and SrBi2Ta2O9 ceramics were measured by LCR meter. The Ce-doped SBN (SBCN) ceramics have a higher Curie temperature (TC) and dielectric constant at TC (380?C and ?? ~3510) compared to the Ce-doped SBT (SBCT) ceramics (330?C and ?? ~115) when measured at 100Hz. However, the Ce-doped SBT (SBCT) ceramics have lower conductivity and dielectric loss.


2004 ◽  
Vol 449-452 ◽  
pp. 725-728 ◽  
Author(s):  
A. Shimono ◽  
Hirohisa Sato ◽  
K. Kawada-Wada ◽  
Yasuo Ito ◽  
Naoki Kamegashira

A development of synthetic process via rare earth complex precursors was applied to a formation of rare earth manganites which can not be easily formed by conventional (normal) process. Several compounds of rare earth manganites with various structures were successfully synthesized by this method and their crystal structures were identified by powder X-ray diffractometry. Both of the orthorhombic and rhombohedral LaMnO3phases were prepared. LnMn2O5phase was more easily prepared by this method than by another method. The solid solution of (Sr,La)2MnO4phase for various compositions were tried to prepare a single phase, especially for a composition region Sr/La ratio < 1. since this phase is normally formed for only region of Sr/La ratio .. 1 by the solid state reaction method.


Author(s):  
A. C. Iyasara ◽  
F. U. Idu ◽  
E. O. Nwabineli ◽  
T. C. Azubuike ◽  
C. V. Arinze

La2Ti2-xNbxO7 (x = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25) powders were synthesised via solid state reaction method, followed by sintering at 1673 K in a reducing atmosphere of 5% H2/N2 gas. The crystal structure, microstructure and thermoelectric (TE) properties of the pure and Nb-doped La2Ti2O7 ceramics were investigated. All compositions were single phase with porous microstructures consistent with their low experimental densities. Thermoelectric results of Nb-doped compositions showed improved properties in comparison to pure La2Ti2O7, suggesting that cation doping has the potential to improve the thermoelectric properties. Generally, the TE results obtained are not suitable for thermoelectric applications. However, the high Seebeck coefficient (≥190 μV/K) and glass-like thermal conductivity ( ≤2.26 w / m.k )  values achieved have opened a new window for exploring the thermoelectric potentials of La2Ti2O7 and other related oxides.


2016 ◽  
Vol 34 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Sumit K. Roy ◽  
S. Chaudhuri ◽  
R.K. Kotnala ◽  
D.K. Singh ◽  
B.P. Singh ◽  
...  

AbstractIn this work the X-ray diffraction, scanning electron microscopy, Raman and dielectric studies of lead free perovskite (1 – x)Ba0.06(Na1/2Bi1/2)0.94TiO3–xNaNbO3 (0 ⩽ x ⩽ 1.0) ceramics, prepared using a standard solid state reaction method, were investigated. X-ray diffraction studies of all the ceramics suggested the formation of single phase with crystal structure transforming from rhombohedral-tetragonal to orthorhombic symmetry with the increase in NaNbO3 content. Raman spectra also confirmed the formation of solid solution without any new phase. Dielectric studies showed that the phase transition is of diffusive character and diffusivity parameter decreases with increasing NaNbO3 content. The compositional fluctuation was considered to be the main cause of diffusivity.


2016 ◽  
Vol 16 (4) ◽  
pp. 3684-3689 ◽  
Author(s):  
Xin Min ◽  
Zhaohui Huang ◽  
Minghao Fang ◽  
Yan’gai Liu ◽  
Chao Tang ◽  
...  

In this paper, M3(VO4)2 (M = Mg, Ca, Sr, and Ba) self-activated phosphors were prepared by a solid-state reaction method at 1,000 °C for 5 h. The phase formation and micrographs were analyzed by X-ray diffraction and scanning electron microscopy. The Ca3(VO4)2 phosphor does not show any emission peaks under excitation with ultraviolet (UV) light. However, the M3(VO4)2 (M = Mg, Sr, and Ba) samples are effectively excited by UV light chips ranging from 200 nm to 400 nm and exhibit broad emission bands due to the charge transfer from the oxygen 2p orbital to the vacant 3d orbital of the vanadium in the VO4. The color of these phosphors changes from yellow to light blue via blue-green with increasing ionic radius from Mg to Sr to Ba. The luminescence lifetimes and quantum yield decrease with the increasing unit cell volume and V–V distance, in the order of Mg3(VO4)2 to Sr3(VO4)2 to Ba3(VO4)2. The emission intensity decreases with the increase of temperatures, but presents no color shift. This confirms that these self-activated M3(VO4)2 phosphors can be suggested as candidates of the single-phase phosphors for light using UV light emitting diodes (LEDs).


2017 ◽  
Vol 126 (1B) ◽  
pp. 147
Author(s):  
Nguyen Thi Thuy

<p><strong>Abstract: </strong>LaFeO<sub>3</sub> system with doped Ti, Co, Cu was manufactured by solid state reaction method, it was sintered at 1250<sup>0</sup>C and 1290<sup>0</sup>C in 10 hours with a heating rate of 3<sup>0</sup>C/min. Using X-ray diffraction and Scanning Electron Microscope (SEM) to examine the structure, it reveals that samples are single-phase and orthogonal-perovskite structure describing by the Pnma space group, the unit cell volume of the samples increases when Ti, Co, Cu are doped to replace ion Fe<sup>+3</sup>. The size of particle increase while raising the temperature of sintering. Measuring the resistance which depends on temperature between the room temperature and 1000K, it can be seen that when doping Co, Cu with the nominal component La(Fe<sub>0,2</sub>Co<sub>0,2</sub>Ti<sub>0,6</sub>)O<sub>3</sub> and La(Fe<sub>0,4</sub>Cu<sub>0,1</sub>Ti<sub>0,5</sub>)O<sub>3 </sub>, the conductivity of samples increases respectively. Especially, the conductivity of Cu doped sample is higher than two other samples, and reach the highest conductivity at about 900<sup>0</sup>C, Seebeck coefficient S of La(Fe<sub>0.6</sub>Ti<sub>0.4</sub>)O<sub>3</sub> can be change from positive to negative at the temperature of around 700<sup>0</sup>C.</p>


Sign in / Sign up

Export Citation Format

Share Document