Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4−xSb12

2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.

2010 ◽  
Vol 1267 ◽  
Author(s):  
Adul Harnwunggmoung ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

AbstractCoSb3 is known as a skutterudite compound that could exhibit high thermoelectric figure of merit. However, the thermal conductivity of CoSb3 is relatively high. In order to enhance the thermoelectric performance of this compound, we tried to reduce the thermal conductivity of CoSb3 by substitution of Rh for Co and by Tl-filling into the voids. The polycrystalline samples of (Co,Rh)Sb3 and Tl-filled CoSb3 were prepared and the thermoelectric properties such as the Seebeck coefficient, electrical resistivity, and thermal conductivity were measured in the temperature range from room temperature to 750 K. The Rh substitution for Co reduced the lattice thermal conductivity, due to the alloy scattering effect. The minimum value of the lattice thermal conductivity was 4 Wm-1K-1 at 750 K obtained for (Co0.7Rh0.3)Sb3. Also the lattice thermal conductivity rapidly decreased with increasing the Tl-filling ratio. T10.25Co4Sb12 exhibited the best ZT values; the maximum ZT was 0.9 obtained at 600 K.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 643 ◽  
Author(s):  
Bhuvanesh Srinivasan ◽  
David Berthebaud ◽  
Takao Mori

As a workable substitute for toxic PbTe-based thermoelectrics, GeTe-based materials are emanating as reliable alternatives. To assess the suitability of LiI as a dopant in thermoelectric GeTe, a prelusive study of thermoelectric properties of GeTe1−xLiIx (x = 0–0.02) alloys processed by Spark Plasma Sintering (SPS) are presented in this short communication. A maximum thermoelectric figure of merit, zT ~ 1.2, was attained at 773 K for 2 mol% LiI-doped GeTe composition, thanks to the combined benefits of a noted reduction in the thermal conductivity and a marginally improved power factor. The scattering of heat carrying phonons due to the presumable formation of Li-induced “pseudo-vacancies” and nano-precipitates contributed to the conspicuous suppression of lattice thermal conductivity, and consequently boosted the zT of the Sb-free (GeTe)0.98(LiI)0.02 sample when compared to that of pristine GeTe and Sb-rich (GeTe)x(LiSbTe2)2 compounds that were reported earlier.


RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3304-3314
Author(s):  
Enamul Haque ◽  
Mizanur Rahaman

Weak anharmonicity: the weak anharmonicity leads to weak phonon scattering in SrGaSnH. Thus, SrGaSnH intrinsically possesses a high lattice thermal conductivity (kl).. Such large κl dramatically reduces the thermoelectric figure of merit.


2006 ◽  
Vol 510-511 ◽  
pp. 1070-1073 ◽  
Author(s):  
Il Ho Kim ◽  
J.B. Park ◽  
Tae Whan Hong ◽  
Soon Chul Ur ◽  
Young Geun Lee ◽  
...  

Zn4Sb3 was successfully produced by a hot pressing technique, and its thermoelectric properties were investigated in the temperature range from 4K to 300K. The Seebeck coefficient, electrical conductivity, thermal conductivity, and thermoelectric figure of merit showed a discontinuity in variation at 242K, indicating the α-Zn4Sb3 to β-Zn4Sb3 phase transformation. Lattice thermal conductivity was found to be dominant in the total thermal conductivity of Zn4Sb3. Therefore, it is expected that thermoelectric properties can be improved by reducing the lattice thermal conductivity inducing phonon scattering centers.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 864 ◽  
Author(s):  
Eric Alleno

Besides alloying, nanostructuring was implemented to improve the thermoelectric properties in Fe2VAl. This Heusler alloy indeed displays a thermoelectric figure of merit too small for applications (ZT ~ 0.1 at 300 K) which is caused by a large lattice thermal conductivity (λL = 27 W·m−1·K−1 at 300 K). The effect of nanostructuring on the microstructure and on the thermoelectric properties of alloyed Fe2VAl are therefore reviewed. By mechanical alloying followed by spark plasma sintering, the average grain size (D) was decreased to D ~ 300–400 nm in Fe2VAl0.9Si0.1, Fe2VAl0.9Si0.07Sb0.03, Fe2V1.05Al0.95, and Fe2V0.9W0.1Al. As expected, phonon scattering at the numerous grain boundaries lead to a strong decrease in the lattice thermal conductivity, which reached values as small as λL = 3.3 W·m−1·K−1. However, in all the reviewed examples, the thermoelectric figure of merit (ZT) is only marginally or not even improved when comparing to non-nanostructured samples because the electrical resistivity also increases upon nanostructuring. A significantly improved ZT = 0.3 at 500 K was only recently observed in severely deformed Fe2VAl0.95Ta0.05 by high pressure torsion because the very fine microstructure (D ~ 100 nm) strongly enhanced the thermal conductivity reduction.


2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


1997 ◽  
Vol 478 ◽  
Author(s):  
T. Caillat ◽  
A. Borshchevsky ◽  
J. -P. Fleurial

Abstractβ-Zn4Sb3 was recently identified at the Jet Propulsion Laboratory as a new high performance p-type thermoelectric material with a maximum dimensionless thermoelectric figure of merit ZT of 1.4 at a temperature of 673K. A usual approach, used for many state-of-the-art thermoelectric materials, to further improve ZT values is to alloy β-Zn4Sb3 with isostructural compounds because of the expected decrease in lattice thermal conductivity. We have grown Zn4−xCdxSb3 crystals with 0.2≤x<1.2 and measured their thermal conductivity from 10 to 500K. The thermal conductivity values of Zn4−xCdxSb3 alloys are significantly lower than those measured for β-Zn4Sb3 and are comparable to its calculated minimum thermal conductivity. A strong atomic disorder is believed to be primarily at the origin of the very low thermal conductivity of these materials which are also fairly good electrical conductors and are therefore excellent candidates for thermoelectric applications.


2010 ◽  
Vol 650 ◽  
pp. 126-131 ◽  
Author(s):  
Hong Fu ◽  
Peng Zhan Ying ◽  
J.L. Cui ◽  
Y.M. Yan ◽  
X.J. Zhang

Solid solution formation is a common and effective way to reduce the lattice thermal conductivity for thermoelectric materials because of additional phonon scattering by point defects and grain boundaries. In the present work we prepared In2Te3–SnTe compounds using a mild solidification technique and evaluated their thermoelectric properties in the temperature range from 318705 K. Measurements reveal that the transport properties are strongly dependent on the chemical composition  In2Te3 content, and lattice thermal conductivity significantly reduces above a minimum In2Te3 concentration, which can possibly be explained by an introduction of the vacancy on the indium sublattice and periodical vacancy planes. The highest thermoelectric figure of merit ZT of 0.19 can be achieved at 705 K, and a big improvement of In2Te3 based alloys would be expected if a proper optimization to the chemical compositions and structures were made.


Sign in / Sign up

Export Citation Format

Share Document