Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag

2003 ◽  
Vol 18 (11) ◽  
pp. 2571-2579 ◽  
Author(s):  
I. Lecomte ◽  
M. Liégeois ◽  
A. Rulmont ◽  
R. Cloots ◽  
F. Maseri

Alkali activation of dehydroxylated kaolin or clay yielded high-strength polymeric materials, so-called geopolymers. They were synthesized by mixing the aluminosilicate with solutions of sodium metasilicate and KOH followed by adding 45 wt.% of ground-granulated blast furnace slag. The influence of the aluminosilicate source, its activation temperature, and the order of mixing raw materials were studied on the workability of the blending paste, the microstructure, and the Vickers hardness of the geopolymer samples. The polymeric material is completely amorphous according to x-ray diffraction. Solid-state 27Al and 29Si magic-angle-spinning nuclear magnetic resonance showed that the geopolymer consists of AlO4 and SiO4 tetrahedra linked together through a polymeric network constituted by branched entities SiQ4(4Al) and SiQ4(3Al), but also by less-polymerized silicates SiQ1 and SiQ2. Scanning electron microscopy showed a homogeneous polymeric gel matrix containing unreacted slag (and quartz) grains; thermogravimetric analysis and differential scanning calorimetry exhibited a high content of water and an elevated melting point (1260°C). Vickers hardness values are in the range of 200 MPa.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3511 ◽  
Author(s):  
Joonho Seo ◽  
Solmoi Park ◽  
Hyun No Yoon ◽  
Jeong Gook Jang ◽  
Seon Hyeok Kim ◽  
...  

The solidification and stabilization of calcium carbide residue (CCR) using granulated blast furnace slag was investigated in this study. CCR binding in hydrated slag was explored by X-ray diffraction, 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and thermodynamic calculations. Mercury intrusion porosimetry and and compressive strength tests assessed the microstructure and mechanical properties of the mixtures of slag and CCR. C-A-S-H gel, ettringite, hemicarbonate, and hydrotalcite were identified as the main phases in the mixture of slag and CCR. The maximum CCR uptake by slag and the highest volume of precipitated solid phases were reached when CCR loading in slag is 7.5% by mass of slag, according to the thermodynamic prediction. This feature is also experimentally observed in the microstructure, which showed an increase in the pore volume at higher CCR loading.


2021 ◽  
Vol 25 (8) ◽  
pp. 110-120
Author(s):  
M. Sivasakthi ◽  
R. Jeyalakshmi ◽  
N.P. Rajamane ◽  
J. Baskarasundararaj

The present study investigated the physicochemical and thermal properties of fly ash and ground granulated blast furnace slag (GGBS) based geopolymer mortars exposed to elevated temperatures under different reaction conditions. The compressive strength results shows that fly ash based geopolymer mortar exhibits retention of compressive strength up to 800⁰C whereas the addition of GGBS increases the ambient temperature compressive strength, however, thereafter the retention of strength is observed as 66% at 400˚C and 30% at 800˚C. Fourier transform infra-red spectroscopy (FT- IR) and 29Si and 27Al Magic angle spinning nuclear magnetic resonance (MAS-NMR) spectrum confirmed the alumino-silicate network structure of the geopolymer. Thermogravimetry with differential thermal analysis (TGA/DTA) showed that most of the % weight loss occurred in the temperature range between 30-250ºC due to the water loss after that it was stabilized till 1000⁰C. Thermal conductivity has the direct relationship with the temperature whereas it is vice versa for the % linear thermal expansion. The Scanning electron microscopy (SEM) analysis was performed to identify the morphology changes before and after thermal exposure.


2016 ◽  
Vol 865 ◽  
pp. 107-113 ◽  
Author(s):  
Pavel Mec ◽  
Jana Boháčová ◽  
Josef Koňařík

Alkali activated systems are materials formed by alkali-activation of latent hydraulic or pozzolanic materials. The outcome is a polymeric structure with properties comparable to materials based on cement.The principle of the experiment is to compare selected properties of alkali-activated materials based on blast furnace slag and using various types of activator (sodium water glass, potassium water glass, DESIL AL and sodium metasilicate) to binders based on white and Portland cements of the highest quality. The samples were left for one year in environments simulating the conditions in the interior and exterior. Selected physical-mechanical properties were evaluated and compared.


2011 ◽  
Vol 287-290 ◽  
pp. 1275-1279
Author(s):  
Yong Jia He ◽  
Lin Nu Lu ◽  
Shu Guang Hu

Compound binding material was prepared by the alkali activation of metakaolin and ground granulated blast furnace slag. Hydration product components, microstructure and mechanical properties of the hardened paste were investigated by IR, XRD, SEM, MIP, and compressive strength measurement. Results indicated that hydration products included C-S-H and geopolymer, and both of them were amorphous although there were differences in their structure and morphology. When the dosage of slag was less than 50%, the compressive strength of hardened paste increased as the dosage increased, which was mainly because C-S-H produced by the reaction of GGBFS and alkali filled void in geopolymer phase, and part of unreacted slag particles acting as microaggregate to prevent from extension of microcrack in the hardened paste, so the porosity of hardened paste decreased and compressive strength increased.


2018 ◽  
Vol 20 (2) ◽  
pp. 208-215

The paper presents a laboratory study of concrete mixes based on the alkali-activation of an industrial by-product, ground granulated blast furnace slag (GGBS). A number of factors potentially affecting the resulting concrete quality in terms of workability and strengths were investigated (namely activator type, molarity, curing conditions and times). The statistical significance of the effect of these factors was supported by ANOVA. Higher workability and strengths (with lower activator concentrations) were obtained for KOH containing mixes. Curing at constant moisture and ambient temperature was successful for most alkaline activators and mixes, which showed good concrete strengths at all curing times; when Na2SiO3 was used in addition to NaOH or KOH activators of moderate to high molarity, strengths exceeded those of Ordinary Portland Cement (CEM-I) concrete of a similar water/cement ratio.


2016 ◽  
Vol 249 ◽  
pp. 3-7 ◽  
Author(s):  
Vlastimil Bílek ◽  
Jan Hurta ◽  
Petra Done ◽  
Libor Zidek ◽  
Tomas Zajdlik

Hybrid cements represent a relatively new type of binders which combine some of the advantages of Ordinary Portland Cement (OPC), the application of mineral admixtures and alkali activation. Hybrid cements represent blends containing a low portion of OPC and a high proportion of mineral additions (such as blast furnace slag, fly ash, metakaolin ....). The paper is focused on the study of properties of mortars prepared from hybrid cements. Mortars with hybrid cements were prepared for an evaluation of the effects of the dosage and the composition of alkali activator, the dosage of OPC and the ratio between ground granulated blast furnace slag and fly ash. The results make it possible to optimize the composition of hybrid alkali activated concretes.


Sign in / Sign up

Export Citation Format

Share Document