Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies

2004 ◽  
Vol 19 (11) ◽  
pp. 3255-3262 ◽  
Author(s):  
U. Anselmi-Tamburini ◽  
J.E. Garay ◽  
Z.A. Munir ◽  
A. Tacca ◽  
F. Maglia ◽  
...  

The sintering of nanosize powders of fully stabilized zirconia was investigated using the spark plasma sintering (SPS) method. The influence of sintering temperature, heating rate, direct current pulse pattern, sintering time, and sintering pressure on the final density and grain size of the product was investigated. The dependence of densification on temperature showed a maximum at 1200 °C, resulting with nearly fully dense zirconia with a crystallite size of about 100 nm. Heating rate (50∼300 °C min−1) and sintering time (5–16 min) had no significant influence on the final density and the crystallite size. Pulsing patterns ranging from 2:2 to 48:2 (on:off) had no influence on the density or the crystallite size. However, the applied pressure had a significant influence on the final density but no apparent effect on crystallite size for a sintering temperature of 1200 °C and a hold time of 5 min.

2005 ◽  
Vol 287 ◽  
pp. 335-339 ◽  
Author(s):  
Kyeong Sik Cho ◽  
Kwang Soon Lee

Rapid densification of the SiC-10, 20, 30, 40wt% TiC powder with Al, B and C additives was carried out by spark plasma sintering (SPS). In the present SPS process, the heating rate and applied pressure were kept at 100°C/min and at 40 MPa, while the sintering temperature varied from 1600-1800°C in an argon atmosphere. The full density of SiC-TiC composites was achieved at a temperature above 1800°C by spark plasma sintering. The 3C phase of SiC in the composites was transformed to 6H and 4H by increasing the process temperature and the TiC content. By tailoring the microstructure of the spark-plasma-sintered SiC-TiC composites, their toughness could be maintained without a notable reduction in strength. The strength of 720 MPa and the fracture toughness of 6.3 MPa·m1/2 were obtained in the SiC-40wt% TiC composite prepared at 1800°C for 20 min.


2021 ◽  
Vol 96 ◽  
pp. 2-8
Author(s):  
Trung Tran Bao ◽  
◽  
Phuong Doan Dinh ◽  
Linh Nguyen Ngoc ◽  
Toan Nguyen Van ◽  
...  

In this paper, FeSi6,5 (6.5 wt.% Si) soft magnetic materials have been prepared Via a Spark Plasma Sintering (SPS) technique at difference sintering temperatures in the range of 1150 to 1300 °c for 15 min and a heating rate of 100 °c/min. The results show that the density of sintered samples increased with the rising sintering temperature resulted in the enhancement of Vickers hardness and magnetic properities otsintered samples. Hovvever, the highest magnetic saturation (Ms) of 209.6 emu/g and lowest coercivity (Hc) of 1.85 Oe were obtained for the SPSed sample at 1250 °c. In contrast, the sample sintered in vacuum at 1300 °c for 1h with heating rate of 20 °c/min shows the lower magnetic properties due to the lower density and high amount of pores in the structure. The results of research show that the spark plasma sintering route has a high potential of fast sintering Fe-Si soft magnetic materials and for application.


2016 ◽  
Vol 838-839 ◽  
pp. 225-230 ◽  
Author(s):  
Koji Morita ◽  
Byung Nam Kim ◽  
Hidehiro Yoshida ◽  
Keijiro Hiraga ◽  
Yoshio Sakka

In order to fabricate fine-grained and dense nanoceramic materials, the effect of spark-plasma-sintering (SPS) conditions was examined in MgAl2O4 spinel as a reference material. The SPS conditions, such as heating rate and loading temperature, strongly affected the microstructures. Although the density can be improved with decreasing the heating rate to less than 10 °C/min, it requires a long processing time. In order to fully utilize the high heating rate that is a primary advantage of the SPS technique, load controlling is very effective to achieve high density with maintaining fine grain size. An increase in the loading temperature during SPS processing can reduce the residual porosity in a spinel even at the widely used high heating rate of 100 °C/min. This suggests that for the SPS processing in ceramics, the load controlling is an important factor as well as the heating rate and sintering temperature.


2018 ◽  
Vol 281 ◽  
pp. 420-425
Author(s):  
Yun Peng Ding ◽  
Ming Xuan Zhang ◽  
Qun Luo ◽  
Chen Jiang Dong ◽  
Jiao Jiao Yao ◽  
...  

Polycrystalline cubic boron nitride (PcBN) composites were fabricated by spark plasma sintering (SPS). The SiC, Si3N4 and Si/B were used as binder. The effects of SPS sintering process parameters, such as the sintering temperature, holding time, heating rate and binder composition, on the properties of PcBN samples were investigated. PcBN composite with a hardness of 23.12GPa was fabricated efficiently by SPS. The hardness of PcBN sample increased first and then decreased with the increase of sintering temperature. As the holding time was 20 min, the hardness of PcBN sample was the highest. The PcBN performance at the heating rate of 50 °C/min was significantly better than that of 100°C /min. When the binder component of SiC, Si3N4, and Si was 63%:27%:10%, the hardness of PcBN was the highest. With an addition of Si, the PcBN samples had higher hardness than that of B.


2007 ◽  
Vol 534-536 ◽  
pp. 593-596 ◽  
Author(s):  
Lan Sun ◽  
Cheng Chang Jia ◽  
Hua Tang

This paper concerned with SPS (spark plasma sintering), hot pressing of sinter nanometer WC-Co powder and discussed the density, hardness, microstructures and grain sizes of the alloys sintered by different styles. The results showed that SPS could lower the sintering temperature, increased the density and circumscribed the growth of grain size of WC. Hot pressing sintering could produce high density alloys and play well on the grain growth, but its sintering temperature and sintering time were larger than SPS. Besides, the hardness of the sintered cemented alloys that was dependent on the grain size and densification could also be improved by SPS and hot pressing.


2015 ◽  
Vol 782 ◽  
pp. 107-112
Author(s):  
Li Fen Wang ◽  
Zhao Hui Zhang ◽  
Tie Jian Su ◽  
Fu Chi Wang

TiB-Ti/Ti-6Al-4V composites were fabricated by spark plasma sintering (SPS) technique under a pressure of 50MPa, with sintering temperature of 1300 °C and heating rate of 100 °C /min. The effect of the TiB content in TiB-Ti composite layer on microstructures and mechanical properties of the TiB-Ti/Ti-6Al-4V composites were investigated. The results indicate that as an advanced welding method, SPS technique provided the excellent welding combination of TiB-Ti and Ti-6Al-4V. The relatively excellent mechanical properties of the joints, including the relative density of 98.6%, micro-hardness of 10.2GPa, fracture strength of 177MPa were achieved as TiB content in TiB-Ti composite layer reaches 50%.


2017 ◽  
Vol 59 (11-12) ◽  
pp. 1033-1036 ◽  
Author(s):  
Sherzod Kurbanbekov ◽  
Mazhyn Skakov ◽  
Viktor Baklanov ◽  
Batyrzhan Karakozov

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Kirill V. Kuskov ◽  
Mohammad Abedi ◽  
Dmitry O. Moskovskikh ◽  
Illia Serhiienko ◽  
Alexander S. Mukasyan

Spark plasma sintering (SPS) is widely used for the consolidation of different materials. Copper-based pseudo alloys have found a variety of applications including as electrodes in vacuum interrupters of high-voltage electric circuits. How does the kinetics of SPS consolidation for such alloys depend on the heating rate? Do SPS kinetics depend on the microstructure of the media to be sintered? These questions were addressed by the investigation of SPS kinetics in the heating rate range of 0.1 to 50 K/s. The latter conditions were achieved through flash spark plasma sintering (FSPS). We also compared the sintering kinetics for the conventional copper–chromium mixture and for the mechanically induced copper/chromium nanostructured particles. It was shown that, under FSPS conditions, the observed maximum consolidation rates were 20–30 times higher than that for conventional SPS with a heating rate of 100 K/min. Under the investigated conditions, the sintering rate for mechanically induced composite Cu/Cr particles was 2–4 times higher compared to the conventional Cu + Cr mixtures. The apparent sintering activation energy for the Cu/Cr powder was twice less than that for Cu–Cr mixture. It was concluded that the FSPS of nanostructured powders is an efficient approach for the fabrication of pseudo-alloys.


Sign in / Sign up

Export Citation Format

Share Document