Grain boundary self-diffusion in Ni: Effect of boundary inclination

2005 ◽  
Vol 20 (5) ◽  
pp. 1146-1153 ◽  
Author(s):  
Mikhail I. Mendelev ◽  
Hao Zhang ◽  
David J. Srolovitz

We examined the influence of the boundary plane on grain-boundary diffusion in Ni through a series of molecular dynamics simulations. A series of 〈010〉 ∑5 tilt boundaries, including several high symmetry and low symmetry boundary planes, were considered. The self-diffusion coefficient is a strong function of boundary inclination at low temperature but is almost independent of inclination at high temperature. At all temperatures, the self-diffusion coefficients are low when at least one of the two grains has a normal with low Miller indices. The grain boundary self-diffusion coefficient is an Arrhenius function of temperature. The logarithm of the pre-exponential factor in the Arrhenius expression was shown to be nearly proportional to the activation energy for diffusion. The activation energy for self-diffusion in a (103) symmetric tilt boundary is much higher than in boundaries with other inclinations. We discuss the origin of the boundary plane density–diffusion coefficient correlation.

2005 ◽  
Vol 237-240 ◽  
pp. 346-351
Author(s):  
Yoshihiro Yamazaki ◽  
Takahiro Iida ◽  
Yoshiaki Iijima ◽  
Yuh Fukai

Self-diffusion coefficient of 95Nb in NbHx alloys (x=0.05,0.25 and 0.3) has been determined in the temperature range from 823 to 1323 K by using a serial sputter-microsectioning technique. The self-diffusion coefficient of Nb in the NbHx alloys are larger than that in Nb, suggesting that vacancies are formed by hydrogen dissolution, that is, the formation of hydrogen-induced vacancies. The value of the pre-exponential factor for the Nb diffusion in the NbH0.05 alloy is five times larger than that in Nb, while the difference in the activation energies between the NbH0.05 alloy and pure Nb is small. The self-diffusion enhancement in the NbH0.05 alloy is mainly caused by lowering in vibrational frequencies of atoms in the immediate neighborhood of hydrogen-induced vacancies.


1964 ◽  
Vol 17 (5) ◽  
pp. 516 ◽  
Author(s):  
DA Collins ◽  
H Watts

The self-diffusion coefficient of benzene in benzene-cyclohexane mixtures was measured at 15�, 25�, and 35�. Viscosities of the mixtures were measured at the same temperatures. The diffusion coefficient is a maximum, while the viscosity is a minimum at a mole fraction of benzene between 0.6 and 0.8. The activation energy for viscous flow is a minimum in the mole fraction range 0.6-0.8 of benzene. The excess viscosity and the excess activation energy of viscous flow are minimal at a mole fraction 0.5, the same composition at which the maxima occur in excess volume and heat mixing. The product Dn is a linear function of mole fraction.


2010 ◽  
Vol 152-153 ◽  
pp. 1607-1610 ◽  
Author(s):  
Wei Chan Cao ◽  
Shu Hua Liang ◽  
Yue Xin Xue ◽  
Xian Hui Wang

In order to gain a deep insight into the mechanism of Ni-doped Mo activated sintering process, the diffusion behavior of Mo-Ni interface was studied utilizing a Mo-Ni diffusion couple. The phase structure and composition on the diffusion layer were characterized and analyzed by means of scanning electron microscope and transmission electron microscope, the self diffusion coefficient and interdiffusion coefficient were calculated. The results show that a diffusion layer is formed between Mo and Ni after sintering at 1223k for 1h, which is comprised of a δ-NiMo intermetallic compound and a limit solid solution containing small amounts of nickel. The self diffusion coefficient and interdiffusion coefficient are 2.068×10-18cm2/s and 4.5×10-12cm2/s, respectively. It is suggested that the diffusion rate of Mo in δ-NiMo intermetallic compound and a limit solid solution containing small amounts of nickel is 106 times bigger than that of self diffusion, and the intermetallic compound layer provides a short diffusion path for Mo activated sintering.


1992 ◽  
Vol 47 (10) ◽  
pp. 1047-1050 ◽  
Author(s):  
C. Herdlicka ◽  
J. Richter ◽  
M. D. Zeidler

AbstractSelf-diffusion coefficients of 7Li+ ions have been measured in molten LiNO3 with several compositions of 6Li+ and 7Li+ over a temperature range from 537 to 615 K. The NMR spin-echo method with pulsed field gradients was applied. It was found that the self-diffusion coefficient depends on the isotopic composition and shows a maximum at equimolar ratio. At temperatures above 600 K this behaviour disappears.


Sign in / Sign up

Export Citation Format

Share Document