Enhanced Nucleation and Decreased Growth Rates of Cu2O in Cu0.5Au0.5 (001) Thin Films During in situ Oxidation

2005 ◽  
Vol 20 (7) ◽  
pp. 1902-1909 ◽  
Author(s):  
Liang Wang ◽  
Judith C. Yang

The initial oxidation behaviors of Cu–50 at.% Au (001) single-crystal thin film were studied by in situ ultra-high-vacuum transmission electron microscopy to model nano-oxidation of alloys with one oxidizing component and one inert component. The oxidation behaviors such as incubation time, oxide nucleation rate, oxide growth kinetics as well as nucleation activation energy were greatly changed by the addition of nonoxidizing Au. The reasons for these changes, such as Au segregation to the top surface, a decrease in Cu activity, and reduced lattice mismatch due to the addition of Au, were discussed, and a qualitative analysis of nucleation energetics was given.

2001 ◽  
Vol 7 (6) ◽  
pp. 486-493 ◽  
Author(s):  
Judith C. Yang ◽  
Mridula D. Bharadwaj ◽  
Guangwen Zhou ◽  
Lori Tropia

AbstractWe review our studies of the initial oxidation stages of Cu(001) thin films as investigated by in situ ultra-high vacuum transmission electron microscopy. We present our observations of surface reconstruction and the nucleation to coalescence of copper oxide during in situ oxidation in O2. We have proposed a semi-quantitative model, where oxygen surface diffusion is the dominant mechanism of the initial oxidation stages of Cu. We have also investigated the effect of water vapor on copper oxidation. We have observed that the presence of water vapor in the oxidizing atmosphere retards the rate of Cu oxidation and Cu2O is reduced when exposed directly to steam.


2005 ◽  
Vol 20 (7) ◽  
pp. 1684-1694 ◽  
Author(s):  
Guangwen Zhou ◽  
Judith C. Yang

The initial oxidation stages of Cu(100), (110), and (111) surfaces have been investigated by using in situ ultra-high-vacuum transmission electron microscopy (TEM) techniques to visualize the nucleation and growth of oxide islands. The kinetic data on the nucleation and growth of oxide islands shows a highly enhanced initial oxidation rate on the Cu(110) surface as compared with Cu(100), and it is found that the dominant mechanism for the nucleation and growth is oxygen surface diffusion in the oxidation of Cu(100) and (110). The oxidation of Cu(111) shows a dramatically different behavior from that of the other two orientations, and the in situ TEM observation reveals that the initial stages of Cu(111) oxidation are dominated by the nucleation of oxide islands at temperatures lower than 550 °C, and are dominated by two-dimensional oxide growth at temperatures higher than 550 °C. This dependence of the oxidation behavior on the crystal orientation and temperature is attributed to the structures of the oxygen-chemisorbed layer, oxygen surface diffusion, surface energy, and the interfacial strain energy.


2005 ◽  
Vol 20 (7) ◽  
pp. 1910-1917 ◽  
Author(s):  
L. Sun ◽  
J.C. Yang

The nucleation and growth of Cu2O islands due to Cu(100) oxidation at temperatures from 200 to 350 °C have been observed by in situ ultra-high-vacuum transmission electron microscopy. For this temperature range, epitaxial Cu2O islands form a triangular shape with rounded edges when Cu(100) is exposed to dry oxygen at 5 × 10−4 Torr in situ. Our initial analysis on the nucleation and growth of these three-dimensional Cu2O islands agrees well with the heteroepitaxial model of surface diffusion of oxygen.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1274-1275
Author(s):  
Guang-Wen Zhou ◽  
Mridula D.Bharadwaj ◽  
Judith C.Yang

In the study of metal oxidation, there is a wide gap between information provided by surface science methods and that provided by bulk oxidation studies. The former have mostly examined the adsorption of up to ∽1 monolayer (ML) of oxygen on the metal surface, where as both low and high temperature bulk oxidation studies have mainly focused on the growth of an oxide layer at the later stages of oxidation. Hence, we are visualizing the initial oxidation stages of a model metal system by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM), where the surfaces are atomically clean, in order to gain new understanding of these ambiguous stages of oxidation. We have previously studied the growth of Cu2O islands during initial oxidation of Cu(100) film. We are presently investigating the initial stages of Cu(110) oxidation, from 10−4 Torr O2 to atmospheric pressures and temperature range from room temperature to 700 °C.


2000 ◽  
Vol 6 (S2) ◽  
pp. 42-43
Author(s):  
Mridula D. Bharadwaj ◽  
Lori Tropia ◽  
Murray Gibson ◽  
Judith C. Yang

It is of fundamental and practical interest to understand the oxidation process since a desirable property for metals is resistance to corrosion. But there is a wide gap between information provided by surface science methods and that provided by bulk oxidation studies. The former have mainly examined the adsorption of ∼ 1 ML of oxygen on the metal surface, where as both low and high temperature bulk oxidation studies have mainly focused on the growth of an oxide layer at the later stages of oxidation.We are probing the initial oxidation stage of a model metal system by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM) in order to gain insights into the initial kinetics of oxidation. We have previously shown that the growth mechanism of the cuprous oxide is initially dominated by oxygen surface diffision.


Author(s):  
C. Meneau D'Anterroches

Silicides are studied in electronic engineering for their good metallic properties. Among them the group of rare earth silicides shows particular properties. Indeed, some of them, including ErSi2, crystallize in the AIB2 structure although they do not have the exact stoechiometry, their composition being about 1.7. Thus the physical properties and the influence of vacancies on the structure are studied.The film studied in this work was obtained by in-situ annealing, in ultra high vacuum, of a Si-Er film codeposited on a clean Si (111) substrate. Details are given by F. Arnaud d'Avitaya et al. The epitaxial relationship is (111 )Si//(001 )ErSi2 and (112)Si//(100)ErSi2. According to this orientation the lattice mismatch at the interface is - 1.3 %. The films were analysed using high resolution transmission electron microscopy : they are continuous when annealed at 900°C, and show some extra-spots in their diffraction patterns depending on the zone axis. Extra spots were observed along the {111} (3) and {112} zone axes, but not along {110} (4), We will focus in this paper on the {112}Si or {120}ErSi2 zone axis, the corresponding electron diffraction pattern being in Fig. 1.


Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Sign in / Sign up

Export Citation Format

Share Document