Solid-state synthesis of new glassy Co65Ti20W15 alloy powders and subsequent densification into a fully dense bulk glass

2005 ◽  
Vol 20 (10) ◽  
pp. 2845-2853 ◽  
Author(s):  
M. Sherif El-Eskandarany ◽  
M. Omori ◽  
A. Inoue

The mechanical alloying method was used to synthesize a single glassy phase of Co65Ti20W15 alloy powders, using a high-energy ball mill. The glass transition temperature of the end-product, which was obtained after 173 ks of milling time, lies at 786 K, whereas the crystallization takes place at 878 K through a single sharp exothermic peak with an enthalpy change of crystallization of −4.37 kJ/mol. The reduced glass transition temperature was found to be 0.51. This glassy alloy powders exhibit a very large supercooled liquid region (92 K) for a ternary metallic system. The spark plasma sintering method was used to consolidate the glassy powders under an argon gas atmosphere at 843 K with a pressure of 19.6–38.2 MPa. The sample that was consolidated within 180 s maintains its chemically homogeneous glassy structure with a relative density of above 99.6%. Neither the supercooled liquid region nor crystallization temperature was affected by such a rapid consolidation procedure. Thus, the thermal stability of the bulk glassy sample is almost identical with the original glassy powders. The Vickers microhardness of the bulk glassy Co65Ti20W15 reveals high values, ranging between 8.69 and 8.83 GPa. The fabricated bulk glassy alloy shows high compressive strength of 2.44 GPa with a Young’s modulus of 176.81 GPa. Neither yielding stress, nor plastic strain could be detected for this glassy alloy, which its elastic strain is 1.33%.

2002 ◽  
Vol 17 (9) ◽  
pp. 2447-2456 ◽  
Author(s):  
M. Sherif El-Eskandarany ◽  
Wei Zhang ◽  
A. Inoue

A single phase of glassy Co75Ti25 alloy powders was synthesized by high-energy ball milling the elemental powders at room temperature, using the mechanical alloying method. The final product of the glassy alloy, which is obtained after ball milling for 86 ks, exhibits soft magnetic properties with polarization and coercivity values of 0.67 T and 2.98 kA/m, respectively. This binary glassy alloy, in which its glass transition temperature (Tg) lies at a rather high temperature (833 K), transforms into face-centered-cubic Co3Ti (ordered phase) at 889 K through a single sharp exothermic reaction with an enthalpy change of crystallization (ΔHx) of −2.35 kJ/mol. The supercooled liquid region before crystallization ΔTx of the synthesized glassy powders shows an extraordinary high value (56 K) for a metallic binary system. The reduced glass transition temperature [ratio between Tg and liquidus temperatures, Tl (Tg/Tl)] was 0.56. We also demonstrated postannealing experiments of the mechanically deformed Co/Ti multilayered composite powders. The results show that annealing of the powders at 710 K leads to the formation of a glassy phase (thermally enhanced glass formation reaction). Its heat formation was measured directly and found to be −0.56 kJ/mol. The similarity in the crystallization and magnetization behaviors between the two classes of as-annealed and as-mechanically alloyed glassy powders implies the formation of the same glassy phase.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 579
Author(s):  
Ting Shi ◽  
Lanping Huang ◽  
Song Li

Structural relaxation and nanomechanical behaviors of La65Al14Ni5Co5Cu9.2Ag1.8 bulk metallic glass (BMG) with a low glass transition temperature during annealing have been investigated by calorimetry and nanoindentation measurement. The enthalpy release of this metallic glass is deduced by annealing near glass transition. When annealed below glass transition temperature for 5 min, the recovered enthalpy increases with annealing temperature and reaches the maximum value at 403 K. After annealed in supercooled liquid region, the recovered enthalpy obviously decreases. For a given annealing at 393 K, the relaxation behaviors of La-based BMG can be well described by the Kohlrausch-Williams-Watts (KWW) function. The hardness, Young’s modulus, and serrated flow are sensitive to structural relaxation of this metallic glass, which can be well explained by the theory of solid-like region and liquid-like region. The decrease of ductility and the enhancement of homogeneity can be ascribed to the transformation from liquid-like region into solid-like region and the reduction of the shear transition zone (STZ).


2006 ◽  
Vol 21 (4) ◽  
pp. 976-987 ◽  
Author(s):  
M. Sherif El-Eskandarany ◽  
A. Inoue

Low-energy ball milling technique was successfully used to synthesis new glassy Zr52Al6Ni8Cu14W20 multicomponent alloy powders using mechanical alloying method. During the intermediate stage of milling the atoms of Zr, Al, Ni, and Cu migrated and diffused into the W lattice to form a body-centered cubic solid solution phase. As the milling time increases, the obtained metastable powders are subsequently subjected to continuous defects and lattice imperfections that lead to a gradual change in the free energy so that solid solution phase transformed to another metastable phase (glassy). The glassy powders that were obtained after 720 ks milling are fully amorphous and have spherical-like morphology with an average particle size of 0.60 μm in diameter. The synthetic glassy Zr52Al6Ni8Cu14W20 alloy powder, which exhibits a glass transition temperature of 811 K, crystallizes at a high temperature (884 K) through a single sharp exothermic peak with an enthalpy change of crystallization of −5.48 kJ/mol. Whereas the supercooled liquid region before crystallization of the obtained glassy powders is 73 K, the reduced glass transition temperature (ratio between Tg and liquidus temperatures) was found to be 0.46. The fabricated glassy powders were consequently hot-pressed into bulk samples in an argon gas atmosphere at several temperatures with a pressure of 936 MPa. The samples that were consolidated within the temperature of the supercooled liquid region are fully dense, with relative density above ∼99.82%, and maintain their original homogeneous glassy structure. They have high Vickers microhardness values in the range between 8.46 and 8.62 GPa. They also show very high fracture strength (2.13 GPa) with an extraordinary high Young's modulus of 138 GPa. Neither yielding stress, nor plastic strain could be detected for this glassy alloy, the elastic strain of which is 1.47%.


2007 ◽  
Vol 555 ◽  
pp. 521-526 ◽  
Author(s):  
N. Mitrović ◽  
B. Čukić ◽  
Branka Jordović ◽  
Stefan Roth ◽  
M. Stoica

The rods of Fe-based bulk metallic glasses with the nominal composition Fe65.5Cr4Mo4Ga4P12C5B5.5 were cast by melt injection into 1.5 and 1.8 mm diameter copper molds. The thermal stability, microstructure and crystallization behavior were investigated by differential scanning calorimetry, optical micrography and X-ray diffraction, respectively. The wide supercooled liquid region between crystallization temperature (Tx) and glass transition temperature (Tg) in the as-cast state Tx=Tx-Tg=60 K, as well as the high value of reduced glass transition temperature Trg=Tg/Tl=0.567 (Tl is liquidus temperature) approves enhanced thermal stability of the alloy against crystallization. In the as-cast “XRD-amorphous” state, microhardness HV1=742 was observed. Multistep current annealing thermal treatments were performed for structural relaxation. After applying high enough heating power per square area (PS ≥ 6 W/cm2), intensive crystallization of the samples characterized by appearance of several iron-metalloid compounds (Fe5C2, Fe3Ga4, Fe63Mo37 and Mo12Fe22C10) was observed. The microstructure changes after crystallization bring about differences in the microhardness values. The areas of still present amorphous matrix are with increased value HV1=876, but a remarkable decrease to HV1=323 was observed in precipitated crystallized zone that propagate along inner part of cylinders.


2003 ◽  
Vol 18 (12) ◽  
pp. 2799-2806 ◽  
Author(s):  
Akihisa Inoue ◽  
Baolong Shen

Ribbon and bulk nanocrystalline body-centered-cubic (bcc) (Fe,Co) alloys exhibiting good soft magnetic properties were synthesized in Fe71.5-xCoxB13.5Si10Nb4Cu1 system by the simple production processes of melt-spinning or casting and annealing. The glass-type alloys were formed in the Co content range below 30 at.%. These glassy alloys crystallized through two exothermic reactions. The first stage was due to the precipitation of nanoscale bcc-(Fe,Co) phase with a grain size of about 10 nm, and the second stage resulted from the decomposition of the remaining amorphous phase to α–(Fe,Co), (Fe,Co)2B, (Fe,Co)23B6, (Fe,Co)3Si, and (Fe,Co)2Nb phases. The glass transition temperature increased from 820 to 827 K with increasing Co content from 5 to 20 at.%, while the supercooled liquid region decreased slightly from 37 to 30 K because of the nearly constant crystallization temperature. By choosing the 10 at.% Co-containing alloy, we produced cylindrical glassy alloy rods 1.0 and 1.5 mm in diameter by copper mold casting. The subsequent annealing for 300 s at 883 K corresponding to the temperature just above the first exothermic peak caused the formation of nanoscale bcc-(Fe,Co) structure. The bcc-(Fe,Co) alloy rods exhibited good soft magnetic properties of 1.26 T for saturation magnetization and 5.0 A/m for coercive force, which were comparable to those for the corresponding bcc-(Fe,Co) alloy ribbon. The nanocrystalline alloy in a bulk form is encouraging for future use as a new type of soft magnetic material that requires three-dimensional shapes.


2003 ◽  
Vol 18 (9) ◽  
pp. 2141-2149 ◽  
Author(s):  
L. C. Zhang ◽  
Z. Q. Shen ◽  
J. Xu

In this work, glass formation under high-energy ball milling was investigated for a (Ti0.33Zr0.33Hf0.33)50(Ni0.33Cu0.33Ag0.33)40Al10 high-order alloy system with equiatomic substitution for early and late transition-metal contents. For comparison, an amorphous alloy ribbon with the same composition was prepared using the melt-spinning method as well. Structural features of the samples were characterized using x-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. Mechanical alloying resulted in a glassy alloy similar to that obtained by melt spinning. However, the glass formation was incomplete, and a small amount of unreacted crystallites smaller than 30 nm in size still remained in the final ball-milled product. Like the melt-spun glass, the ball-milled glassy alloy also exhibited a distinct glass transition and a wide supercooled liquid region of about 80 K. Crystallization of this high-order glassy alloy proceeded through two main stages. After the primary nanocrystallization was completed, the remaining amorphous phase also behaved as a glass, showing a detectable glass transition and a large supercooled liquid region of about 100 K.


2005 ◽  
Vol 903 ◽  
Author(s):  
Vassilios Kapaklis ◽  
Athanasios Georgiopoulos ◽  
Peter Schweiss ◽  
Constantin Politis

AbstractIn the present work we have intentionally introduced significant amount of oxygen to Zr- based alloys. Samples were prepared either by high energy ball milling of the elemental powders and single phase α-ZrO0.43 at the appropriate stoichiometry, or by melting in an Zr-gettered arc melting facility, in both cases under purified argon atmosphere. The effect of small amounts of oxygen (∼1 at. %) on the amorphization process and the thermal stability of mechanically alloyed Zr54Cu19Ni8Al8Si5Ti5O1 powders and arc melted bulk samples was studied by X-ray diffraction and differential scanning calorimetry. It was found that the introduction of oxygen to the alloy composition does not inhibit the amorphization but enhances greatly the thermal stability of the mechanically alloyed amorphous powders. Compared to samples without oxygen prepared either by arc melting or mechanical alloying, samples with oxygen show an increase of the supercooled liquid region from ΔTx−g=Tx−Tg=117 °C to 141 °C where Tx is the crystallization and Tg the glass transition temperature. The glass transition for the mechanically alloyed samples (Tgma) remains unaffected at 336 °C.


2005 ◽  
Vol 20 (11) ◽  
pp. 2910-2913 ◽  
Author(s):  
X.Q. Zhang ◽  
W. Wang ◽  
E. Ma ◽  
J. Xu

Mechanically alloyed Mo44Si26Ta5Zr5Fe3Co12Y5 multicomponent glassy alloy exhibits an exceptionally high glass transition temperature of 1202 K and a crystallization temperature of 1324 K, as well as an ultrahigh hardness of 18 GPa. This example is used to demonstrate metallic glasses that possess extraordinary thermal stability and ultrahigh strength and, at the same time, a wide supercooled liquid region (122 K) that is needed for processing into bulk forms through powder metallurgy routes.


Sign in / Sign up

Export Citation Format

Share Document