Atomic-level simulation of epitaxial recrystallization and phase transformation in SiC

2006 ◽  
Vol 21 (6) ◽  
pp. 1420-1426 ◽  
Author(s):  
F. Gao ◽  
R. Devanathan ◽  
Y. Zhang ◽  
M. Posselt ◽  
W.J. Weber

A nano-sized amorphous layer embedded in an atomic simulation cell was used to study the amorphous-to-crystalline (a-c) transition and subsequent phase transformation by molecular-dynamics computer simulations in 3C–SiC. The recovery of bond defects at the interfaces is an important process driving the initial epitaxial recrystallization of the amorphous layer, which is hindered by the nucleation of a polycrystalline 2H–SiC phase. The kink sites and triple junctions formed at the interfaces between 2H– and 3C–SiC provide low-energy paths for 2H–SiC atoms to transform to 3C–SiC atoms. The spectrum of activation energies associated with these processes ranges from below 0.8 eV to about 1.9 eV.

1991 ◽  
Vol 6 (11) ◽  
pp. 2291-2304 ◽  
Author(s):  
J.M. Rickman ◽  
S.R. Phillpot ◽  
D. Wolf ◽  
D.L. Woodraska ◽  
S. Yip

The migration of a (100) θ = 43.6°(Σ29) twist grain boundary is observed during the course of a molecular-dynamics simulation. The atomic-level details of the migration are investigated by determining the time dependence of the planar structure factor, a function of the planar interparticle bond angles, and the location of the center of a mass of planes near the grain boundary. It is found that a migration step consists of local bond rearrangements which, when the simulation cell is made large enough, produce domain-like structures in the migrating plane. Although no overall sliding is observed during migration, a local sliding of the planes near the migrating grain boundary accompanies the migration process. It is suggested that a three-dimensional cloud of thermally produced Frenkel-like point defects near the boundary accompanies, and facilitates, its migration.


2008 ◽  
Vol 1 ◽  
pp. 31-39 ◽  
Author(s):  
Paolo Valentini ◽  
Traian Dumitrica

We present a microscopic description for the impacting process of silicon nanospheres onto a silicon substrate. In spite of the relatively low energy regime considered (up to 1 eV/atom), the impacting process exhibits a rich behavior: A rigid Hertzian model is valid for speeds below 500 m/s, while a quasi-ellipsoidal deformation regime emerges at larger speeds. Furthermore, for speeds up to 1000 m/s the particle undergoes a soft landing and creates a long-lived coherent surface phonon. Higher speeds lead to a rapid attenuation of the coherent phonon due to a partial diamond cubic to-tin phase transformation occurring in the particle.


2019 ◽  
Vol 35 (11) ◽  
pp. 2638-2646 ◽  
Author(s):  
Zhi-peng Sun ◽  
Jin-yu Zhang ◽  
Fu-zhi Dai ◽  
Ben Xu ◽  
Wen-zheng Zhang

Sign in / Sign up

Export Citation Format

Share Document