Comparison of diffraction methods for measurement of surface damage in superalloys

2006 ◽  
Vol 21 (7) ◽  
pp. 1775-1781 ◽  
Author(s):  
L.N. Brewer ◽  
M.A. Othon ◽  
Y. Gao ◽  
B.T. Hazel ◽  
W.H. Buttrill ◽  
...  

Surface damage from machining operations is a potential source of failure in metallic components. The ability to quantitatively characterize the depth and extent of the damage layer is critical to controlling the machining process. Electron back scattered diffraction and synchrotron high energy x-ray diffraction were applied to the measurement of machining surface damage in a Ni-based super alloy. Both techniques clearly showed a plastic deformation profile below the surface as a function of the machining conditions used. Using the average intragrain misorientation parameter, the electron back scattered diffraction was able to quantify the amount of surface damage from one surface treatment to another. In addition, the x-ray diffraction measurements were able to simultaneously measure the elastic strain as a function of depth from the surface.

2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


2021 ◽  
Vol 52 (5) ◽  
pp. 1812-1825
Author(s):  
Sen Lin ◽  
Ulrika Borggren ◽  
Andreas Stark ◽  
Annika Borgenstam ◽  
Wangzhong Mu ◽  
...  

AbstractIn-situ high-energy X-ray diffraction experiments with high temporal resolution during rapid cooling (280 °C s−1) and isothermal heat treatments (at 450 °C, 500 °C, and 550 °C for 30 minutes) were performed to study austenite decomposition in two commercial high-strength low-alloy steels. The rapid phase transformations occurring in these types of steels are investigated for the first time in-situ, aiding a detailed analysis of the austenite decomposition kinetics. For the low hardenability steel with main composition Fe-0.08C-1.7Mn-0.403Si-0.303Cr in weight percent, austenite decomposition to polygonal ferrite and bainite occurs already during the initial cooling. However, for the high hardenability steel with main composition Fe-0.08C-1.79Mn-0.182Si-0.757Cr-0.094Mo in weight percent, the austenite decomposition kinetics is retarded, chiefly by the Mo addition, and therefore mainly bainitic transformation occurs during isothermal holding; the bainitic transformation rate at the isothermal holding is clearly enhanced by lowered temperature from 550 °C to 500 °C and 450 °C. During prolonged isothermal holding, carbide formation leads to decreased austenite carbon content and promotes continued bainitic ferrite formation. Moreover, at prolonged isothermal holding at higher temperatures some degenerate pearlite form.


Author(s):  
Mateus Dobecki ◽  
Alexander Poeche ◽  
Walter Reimers

AbstractDespite the ongoing success of understanding the deformation states in sheets manufactured by single-point incremental forming (SPIF), the unawareness of the spatially resolved influence of the forming mechanisms on the residual stress states of incrementally formed sheet metal parts impedes their application-optimized use. In this study, a well-founded experimental proof of the occurring forming mechanisms shear, bending and stretching is presented using spatially resolved, high-energy synchrotron x-ray diffraction-based texture analysis in transmission mode. The measuring method allows even near-surface areas to be examined without any impairment of microstructural influences due to tribological reactions. The depth-resolved texture evolution for different sets of forming parameters offers insights into the forming mechanisms acting in SPIF. Therefore, the forming mechanisms are triggered explicitly by adjusting the vertical step-down increment Δz for groove, plate and truncated cone geometries. The texture analysis reveals that the process parameters and the specimen geometries used lead to characteristic changes in the crystallites’ orientation distribution in the formed parts due to plastic deformation. These forming-induced reorientations of the crystallites could be assigned to the forming mechanisms by means of defined reference states. It was found that for groove, plate and truncated cone geometries, a decreasing magnitude of step-down increments leads to a more pronounced shear deformation, which causes an increasing work hardening especially at the tool contact area of the formed parts. Larger step-down increments, on the other hand, induce a greater bending deformation. The plastic deformation by bending leads to a complex stress field that involves alternating residual tensile stresses on the tool and residual compressive stresses on the tool-averted side incrementally formed sheets. The present study demonstrates the potential of high-energy synchrotron x-ray diffraction for the spatially resolved forming mechanism research in SPIF. Controlling the residual stress states by optimizing the process parameters necessitates knowledge of the fundamental forming mechanism action.


2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

2010 ◽  
Vol 504 ◽  
pp. S155-S158 ◽  
Author(s):  
J. Bednarcik ◽  
C. Curfs ◽  
M. Sikorski ◽  
H. Franz ◽  
J.Z. Jiang

2004 ◽  
Vol 37 (6) ◽  
pp. 967-976 ◽  
Author(s):  
Andrew C. Jupe ◽  
Stuart R. Stock ◽  
Peter L. Lee ◽  
Nikhila N. Naik ◽  
Kimberly E. Kurtis ◽  
...  

Spatially resolved energy dispersive X-ray diffraction, using high-energy synchrotron radiation (∼35–80 keV), was used nondestructively to obtain phase composition profiles along the radii of cylindrical cement paste samples to characterize the progress of the chemical changes associated with sulfate attack on the cement. Phase distributions were acquired to depths of ∼4 mm below the specimen surface with sufficient spatial resolution to discern features less than 200 µm thick. The experimental and data analysis methods employed to obtain quantitative composition profiles are described. The spatial resolution that could be achieved is illustrated using data obtained from copper cylinders with a thin zinc coating. The measurements demonstrate that this approach is useful for nondestructively visualizing the sometimes complex transformations that take place during sulfate attack on cement-based materials. These transformations can be spatially related to microstructure as seen by computed microtomography.


Sign in / Sign up

Export Citation Format

Share Document