Development of quaternary Fe–B–Y–Nb bulk glassy alloys with high glass-forming ability

2007 ◽  
Vol 22 (2) ◽  
pp. 471-477 ◽  
Author(s):  
Dong Ho Kim ◽  
Jin Man Park ◽  
Do Hyang Kim ◽  
Won Tae Kim

The effects of niobium (Nb) addition on the glass-forming ability (GFA), crystallization behavior, and compressive mechanical property of iron (Fe)–boron (B)–yttrium (Y) alloys have been investigated. Among the (Fe71.2B24Y4.8)100−xNbx (x = 0, 2, 4, 6, 8) alloys investigated, (Fe71.2B24Y4.8)96Nb4 exhibits the highest GFA, enabling the formation of glassy rods with a maximum diameter of 7 mm, which is the largest among quaternary Fe-based alloys. The comparison of the crystallization behavior of the alloys shows that the formation of metastable Fe23B6 phase during crystallization in the (Fe71.2B24Y4.8)96Nb4 alloy can suppress the formation of other stable crystalline phases such as α-Fe, enhancing the stability of the glass phase. The present results show that the attainment of a significantly high GFA is possible even in a quaternary Fe-based alloy system by properly tailoring the competing crystalline phase by the modification of liquid chemistry.

2004 ◽  
Vol 19 (8) ◽  
pp. 2221-2225 ◽  
Author(s):  
J.Y. Lee ◽  
D.H. Bae ◽  
J.K. Lee ◽  
D.H. Kim

In this study, the effect of addition of Nb on glass formation in Ni–Ti–Zr–Si–Sn alloys has been studied. The composition range for bulk glass formation with Dmax > 2 mm (Dmax, maximum diameter for glass formation by injection cast method) becomes wider when compared with the non-Nb–containing alloy. The ΔTx (= Tx – Tg; Tx, crystallization onset temperature; Tg, glass transition temperature), Trg (= Tg/Tl; Tl, liquidus temperature) and γ [= Tx/(Tl + Tg)] values for the alloys Dmax > 2 mm are in the range of 40–59, 0.638–0.651, and 0.410–0.419, respectively. The compositions of the alloys (Dmax > 2 mm) are closer to pseudo-eutectic composition than that of the alloy without Nb, showing an improved glass forming ability. The critical cooling rate for glass formation (Dmax = 5 mm) is estimated to be order of approximately 40 K/s.


2006 ◽  
Vol 21 (1) ◽  
pp. 234-241 ◽  
Author(s):  
W. Zhang ◽  
A. Inoue

The addition of Ag to Cu–Zr alloys is very effective for the increase in the stability of supercooled liquid as well as the glass-forming ability (GFA). The large supercooled liquid region (ΔTx) exceeding 60 K in Cu–Zr–Ag ternary system was obtained in a wide range of 25–55 at.% Cu, 40–65 at.% Zr, and 5–25 at.% Ag. The best GFA was obtained around Cu45Zr45Ag10, and glassy alloy rods with diameters up to 6.0 mm were formed by copper mold casting. The bulk glassy alloys exhibit good mechanical properties, i.e., compressive fracture strength of 1780–1940 MPa, Young's modulus of 106–112 GPa, compressive plastic elongation of 0.2–2.9%, and Vickers hardness of 534–599. The finding of the new Cu–Zr–Ag ternary glassy alloy system with high GFA and good mechanical properties is important for development and scientific studies of bulk glassy alloys.


2013 ◽  
Vol 745-746 ◽  
pp. 815-822
Author(s):  
Ya Qiang Dong ◽  
Qi Kui Man ◽  
Bao Long Shen

The effect of Nb addition on the glass-forming ability (GFA), soft-magnetic properties and mechanical properties of [(Co0.65Fe0.35)0.9Ni0.1]73-xB21.9Si5.1Nbx(x=36) alloy system were investigated. The results showed that by adjusting the content of Nb, the thermal stability of the supercooled liquid and the GFA increased effectively. With increasing the amount of Nb, the supercooled liquid region (ΔTx) increased from 45 to 65 K and the reduced glass transition temperature (Trg=Tg/Tl) was located in the range of 0.5840.644. As a result, the [(Co0.65Fe0.35)0.9Ni0.1]73-xB21.9Si5.1Nbx bulk glassy alloys (BGAs) with diameters up to 5.0 mm were produced by copper mold casting. In addition to the high GFA, the Co-based glassy alloys exhibited excellent soft-magnetic properties, i.e., saturation magnetization of 0.530.81 T, low coercive force of 0.511.75 A/m, and high effective permeability of (1.522.53)×104 at 1 kHz under a field of 1 A/m. Besides, the Co-based BGAs also exhibited super high fracture strength of 42704490 MPa and vickers hardness of 11271182.


2005 ◽  
Vol 475-479 ◽  
pp. 3415-3418 ◽  
Author(s):  
Eun Soo Park ◽  
Won Tae Kim ◽  
Do Hyang Kim

The effect of alloy composition on the glass forming ability (GFA) of the Ca-Zn-Mg alloys has been investigated in the present study. The alloy compositions investigated are near Ca-rich ternary eutectic composition; Ca60Mg15Zn25, Ca65Mg10Zn25, Ca65Mg15Zn20, Ca65Mg20Zn15, and Ca70Mg15Zn15. Bulk metallic glass (BMG) samples with the diameter larger than 5 mm are fabricated by conventional copper mold casting method in air atmosphere. Among the parameters representing the glass forming ability, Trg and γ parameters exhibit good correlation with the maximum diameter of the fully amorphous structure in the alloy compositions investigated in the present study.


2008 ◽  
Vol 460 (1-2) ◽  
pp. 409-413 ◽  
Author(s):  
Dmitri V. Louzguine-Luzgin ◽  
Larissa V. Louzguina-Luzgina ◽  
Guoqiang Xie ◽  
Song Li ◽  
Wei Zhang ◽  
...  

2015 ◽  
Vol 833 ◽  
pp. 79-84 ◽  
Author(s):  
Sheng Li Zhu ◽  
Guo Qiang Xie ◽  
Akihisa Inoue ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
...  

We investigated the effects of addition elements (Sn, Al, Si, Ag, Fe, Cr) with a small amount on the glass-forming ability, thermal stability and mechanical properties of the Ti-Zr-Cu-Pd glassy alloy system. The results revealed that minor Sn addition improved the glass-forming ability, thermal stability and plasticity, Si addition enlarged the supercooled liquid region, and Fe addition improved the plasticity, while minor additions of Si, Ag, Fe, and Cr lowered the glass-forming ability, and Al and Cr additions were harmful to the plasticity of the Ti-Zr-Cu-Pd glassy alloy system.


2010 ◽  
Vol 18 (10) ◽  
pp. 1876-1879 ◽  
Author(s):  
Qikui Man ◽  
Huaijun Sun ◽  
Yaqiang Dong ◽  
Baolong Shen ◽  
Hisamichi Kimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document