Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 °C

2008 ◽  
Vol 23 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Shiliang Wang ◽  
Yuehui He ◽  
Jian Xu ◽  
Yao Jiang ◽  
Baiyun Huang ◽  
...  

In this study, we report the growth of metallic tungsten nanowires induced by alloy catalysts (Fe–Ni) at a temperature of 850 °C. The synthesized tungsten nanowires have bottom diameters of 100 to 400 nm and tip diameters of <80 nm, and show a well-defined single-crystalline structure. The formation of the (Fe,Ni)-catalyzed W nanowires should be controlled by the vapor–solid–solid mechanism, rather than the traditional vapor–liquid–solid mechanism, because the growth temperature is significantly below the lowest eutectic temperature (1455 °C) of the Fe–Ni–W ternary system. Our study demonstrates the feasibility of synthesizing metallic nanowires via metal-catalyzed methods, which may be extended to the synthesis of some other metallic nanowires.

2013 ◽  
Vol 1493 ◽  
pp. 237-242 ◽  
Author(s):  
Eric Blanton ◽  
Keliang He ◽  
Jie Shan ◽  
Kathleen Kash

ABSTRACTThe semiconductor ZnGeN2 was grown by a vapor-liquid-solid mechanism. Ordering of the Zn-Ge sublattice with growth temperature and Zn partial pressure was investigated by powder x-ray diffraction and was found to be sensitive to the growth temperature and insensitive, over the range explored, to the Zn and NH3 partial pressures. The degree of disorder on the cation sublattice was observed to correlate with the suppression of predicted Raman peaks and the emergence of phonon density-of-states features.


2007 ◽  
Vol 556-557 ◽  
pp. 187-190 ◽  
Author(s):  
Maher Soueidan ◽  
Olivier Kim-Hak ◽  
Gabriel Ferro ◽  
Patrick Chaudouët ◽  
Didier Chaussende ◽  
...  

We report on the heteroepitaxial growth of 3C-SiC layers by Vapor-Liquid-Solid (VLS) mechanism on various α-SiC substrates, namely on- and off-axis for both 4H and 6H-SiC(0001), Si and C faces. The Si-Ge melts, which Si content was varied from 25 to 50 at%, were fed by 3 sccm of propane. The growth temperature was varied from 1200 to 1600°C. It was found that singledomain 3C-SiC layers can be obtained on 6H-SiC off and on-axis and 4H-SiC on-axis, while the other types of substrate gave twinned 3C-SiC material. As a general rule, one has to increase temperature when decreasing the Si content of the melt in order to avoid DPB formation. It was also found that twinned 3C-SiC layers form at low temperature while homoepitaxy is achieved at high temperature.


2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 75-79 ◽  
Author(s):  
SOUMEN DHARA ◽  
P. K. GIRI

Here we report on the growth and evolution of ZnO nanowires grown from ZnO nanopowder as a source material using a horizontal muffle furnace. The shape evolution has been studied with variation in growth temperature and zinc vapor pressure. The structural analysis on these nanostructures shows c-axis oriented aligned growth. Scanning electron microscopy imaging of these nanostructures revealed the shape evolution from nanowires to nanoribbons and then to nanorods as the growth temperature increases from 650°C to 870°C. At 650°C, only vertical nanowires have been observed and with increase in growth temperature nanowires transform to nanoribbons and then to nanorods at 870°C. And we also observed simultaneous growth of nanorods and nanoribbons under a specific growth condition. We believe that these nanowires and nanorods were formed by vapor–liquid–solid growth mechanism (catalyst-mediated growth), whereas nanoribbons were grown by vapor–solid growth mechanism (without the aid of a metal catalyst). We observed simultaneous occurrence of vapor–liquid–solid and vapor–solid growth mechanisms at a particular growth temperature. These ZnO nanowires exhibit bound exciton related UV emission at ~379 nm, and defect-emission band in the visible region. Possible growth mechanism, shape evolution, and simultaneous growth of two types of one-dimensional ZnO nanostructures under the same growth condition are discussed.


2010 ◽  
Vol 132 (40) ◽  
pp. 13972-13974 ◽  
Author(s):  
Onur Ergen ◽  
Daniel J. Ruebusch ◽  
Hui Fang ◽  
Asghar A. Rathore ◽  
Rehan Kapadia ◽  
...  

2022 ◽  
Author(s):  
Nikolaos Kelaidis ◽  
Matthew Zervos ◽  
Nektarios Lathiotakis ◽  
Alexander Chroneos ◽  
Eugenia Tanasă ◽  
...  

PbO nanowires have been obtained via a self-catalyzed, vapor-liquid-solid mechanism and the reaction of Pb with O2 between 200°C and 300°C at 10 Pa. These had the form of tapes...


Author(s):  
Alla Nastovjak ◽  
David Shterental ◽  
Nataliya Shwartz

The results of the simulation of the GaAs nanowire self-catalyzed growth via vapor-liquid-solid mechanism using various pulse modes are presented in this work.


Sign in / Sign up

Export Citation Format

Share Document