Exploring SiC Growth Limitation of Vapor-Liquid-Solid Mechanism when Using Two Different Carbon Precursors

2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.

2007 ◽  
Vol 1058 ◽  
Author(s):  
Chang-Yong Nam ◽  
Douglas Tham ◽  
John E. Fischer

ABSTRACTNanowires have great potential as building blocks for nanoscale electrical and optoelectronic devices. The difficulty in achieving functional and hierarchical nanowire structures poses an obstacle to realization of practical applications. While post-growth techniques such as fluidic alignment might be one solution, self-assembled structures during growth such as branches are promising for functional nanowire junction formation. In this study, we report vapor-liquid-solid (VLS) self-branching of GaN nanowires during AuPd-catalyzed chemical vapor deposition (CVD). This is distinct from branches grown by sequential catalyst seeding or vapor-solid (VS) mode. We present evidence for a VLS growth mechanism of GaN nanowires different from the well-established VLS growth of elemental wires. Here, Ga solubility in AuPd catalyst is limitless as suggested by a hypothetical pseudo-binary phase diagram, and the direct reaction between NH3 vapor and Ga in the liquid catalyst induce the nucleation and growth. The self-branching can be explained in the context of the proposed VLS scheme and migration of Ga-enriched AuPd liquid on Ga-stabilized polar surface of mother nanowires. This work is supported by DOE Grant No. DE-FG02-98ER45701.


1998 ◽  
Vol 536 ◽  
Author(s):  
N. Ozaki ◽  
Y. Ohno ◽  
S. Takeda ◽  
M. Hirata

AbstractWe have grown Si nanowhiskers on a Si{1111} surface via the vapor-liquid-solid (VLS) mechanism. The minimum diameter of the crystalline is 3nm and is close to the critical value for the effect of quantum confinement. We have found that many whiskers grow epitaxially or non-epitaxially on the substrate along the 〈112〉 direction as well as the 〈111〉 direction.In our growth procedure, we first deposited gold on a H-terminated Si{111} surface and prepared the molten catalysts of Au and Si at 500°C. Under the flow of high pressure silane gas, we have succeeded in producing the nanowhiskers without any extended defects. We present the details of the growth condition and discuss the growth mechanism of the nanowhiskers extending along the 〈112〉 direction.


2004 ◽  
Vol 831 ◽  
Author(s):  
J. Su ◽  
M. Gherasimova ◽  
G. Cui ◽  
J. Han ◽  
S. Lim ◽  
...  

ABSTRACTWe report flexible synthesis of III-Nitride nanowires and heterostructures by metal-organic chemical vapor deposition (MOCVD) via a catalytic vapor-liquid-solid (VLS) growth mechanism. Indium is used as an in-situ catalyst to facilitate and sustain the stability of liquid phase droplet for VLS growth based on thermodynamic consideration. The employment of mesoporous molecular sieves (MCM-41) helps to prevent the coalescence of catalyst droplets and to promote nucleation statistics. Cathodoluminescence (CL) of GaN nanowires shows near band-edge emission at 370nm, and strong E2 phonon peak is observed at room temperature in Raman scattering spectra. Both binary GaN and AlN nanowires have been synthesized by MOCVD. Three-dimensional AlN/GaN trunk-branch nanostructures are reported to illustrate the versatility of incorporating the VLS mechanism into MOCVD process.


2008 ◽  
Vol 600-603 ◽  
pp. 115-118 ◽  
Author(s):  
Henrik Pedersen ◽  
Stefano Leone ◽  
Anne Henry ◽  
Franziska Christine Beyer ◽  
Vanya Darakchieva ◽  
...  

The chlorinated precursor methyltrichlorosilane (MTS), CH3SiCl3, has been used to grow epitaxial layers of 4H-SiC in a hot wall CVD reactor, with growth rates as high as 170 µm/h at 1600°C. Since MTS contains both silicon and carbon, with the C/Si ratio 1, MTS was used both as single precursor and mixed with silane or ethylene to study the effect of the C/Si and Cl/Si ratios on growth rate and doping of the epitaxial layers. When using only MTS as precursor, the growth rate showed a linear dependence on the MTS molar fraction in the reactor up to about 100 µm/h. The growth rate dropped for C/Si < 1 but was constant for C/Si > 1. Further, the growth rate decreased with lower Cl/Si ratio.


Sign in / Sign up

Export Citation Format

Share Document