Fabrication of hybrid composites based on biomineralization of phosphorylated poly(ethylene glycol) hydrogels

2009 ◽  
Vol 24 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Chan Woo Kim ◽  
Sung Eun Kim ◽  
Yong Woo Kim ◽  
Hong Jae Lee ◽  
Hyung Woo Choi ◽  
...  

A novel route to organic-inorganic composites was described based on biomineralization of poly(ethylene glycol) (PEG)-based hydrogels. The 3-dimensional hydrogels were synthesized by radical crosslinking polymerization of poly(ethylene glycol fumarate) (PEGF) in the presence of ethylene glycol methacrylate phosphate (EGMP) as an apatite-nuclating monomer, acrylamide (AAm) as a composition-modulating comonomer, and potassium persulfate (PPS) as a radical initiator. We used the urea-mediated solution precipitation technique for biomineralization of hydrogels. The apatite grown on the surface and interior of the hydrogel was similar to biological apatites in the composition and crystalline structure. Powder x-ray diffraction (XRD) showed that the calcium phosphate crystalline platelets on hydrogels are preferentially aligned along the crystallographic c-axis direction. Inductively-coupled plasma mass spectroscopy (ICP-MS) analysis showed that the Ca/P molar ratio of apatites grown on the hydrogel template was found to be 1.60, which is identical to that of natural bones. In vitro cell experiments showed that the cell adhesion/proliferation on the mineralized hydrogel was more pronounced than on the pure polymer hydrogel.

2004 ◽  
Vol 5 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Johnna S. Temenoff ◽  
Hansoo Park ◽  
Esmaiel Jabbari ◽  
Daniel E. Conway ◽  
Tiffany L. Sheffield ◽  
...  

2018 ◽  
Vol 47 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Sivan Yogev ◽  
Ayelet Shabtay-Orbach ◽  
Abraham Nyska ◽  
Boaz Mizrahi

Thermoresponsive materials have the ability to respond to a small change in temperature—a property that makes them useful in a wide range of applications and medical devices. Although very promising, there is only little conclusive data about the cytotoxicity and tissue toxicity of these materials. This work studied the biocompatibility of three Food and Drug Administration approved thermoresponsive polymers: poly( N-isopropyl acrylamide), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) tri-block copolymer, and poly(lactic acid-co-glycolic acid) and poly(ethylene glycol) tri-block copolymer. Fibroblast NIH 3T3 and HaCaT keratinocyte cells were used for the cytotoxicity testing and a mouse model for the in vivo evaluation. In vivo results generally showed similar trends as the results seen in vitro, with all tested materials presenting a satisfactory biocompatibility in vivo. pNIPAM, however, showed the highest toxicity both in vitro and in vivo, which was explained by the release of harmful monomers and impurities. More data focusing on the biocompatibility of novel thermoresponsive biomaterials will facilitate the use of existing and future medical devices.


Biomaterials ◽  
2004 ◽  
Vol 25 (2) ◽  
pp. 247-258 ◽  
Author(s):  
A.A. Deschamps ◽  
A.A. van Apeldoorn ◽  
H. Hayen ◽  
J.D. de Bruijn ◽  
U. Karst ◽  
...  

1996 ◽  
Vol 11 (2) ◽  
pp. 85-99 ◽  
Author(s):  
Anne De Marre ◽  
Karry Hoste ◽  
Dorine Bruneel ◽  
Etienne Schacht ◽  
Frans De Schryver

2007 ◽  
Vol 341 (1-2) ◽  
pp. 50-57 ◽  
Author(s):  
Hoo-Kyun Choi ◽  
Myung-Kwan Chun ◽  
Se Hee Lee ◽  
Mee Hee Jang ◽  
Hee Doo Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document