Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions

2010 ◽  
Vol 25 (12) ◽  
pp. 2341-2348 ◽  
Author(s):  
W. Jiang ◽  
H. Wang ◽  
I. Kim ◽  
Y. Zhang ◽  
W.J. Weber

Irradiation-induced amorphization in nanocrystalline and single-crystal 3C-SiC has been studied using 1 MeV Si+ ions under identical irradiation conditions at room temperature and 400 K. The disordering behavior has been characterized using in situ ion channeling and ex situ x-ray diffraction methods. The results show that, compared with single-crystal 3C-SiC, full amorphization of small 3C-SiC grains (˜3.8 nm in size) at room temperature occurs at a slightly lower dose. Grain size decreases with increasing dose until a fully amorphized state is attained. The amorphization dose increases at 400 K relative to room temperature. However, at 400 K, the amorphization dose for 2.0 nm grains is about a factor of 4 and 8 smaller than for 3.0 nm grains and bulk single-crystal 3C-SiC, respectively. The behavior is attributed to the preferential amorphization at the interface.

2015 ◽  
Vol 93 (6) ◽  
pp. 594-601 ◽  
Author(s):  
Arek Keuchguerian ◽  
Berline Mougang-Soume ◽  
Frank Schaper ◽  
Davit Zargarian

This report presents the results of a study on the preparation of iron alkoxide complexes chelated by diiminopyridine ligands and their role in the room temperature polymerization of rac-lactide. Reaction of N,N′-(p-R-C6H4CH2)2-diiminopyridines (R = H (1), F (2)) with FeX2 (X = Cl, Br) yielded the homoleptic complexes [(1)2Fe][FeX4] or [(2)2Fe][FeX4], respectively. Treating the latter with Na[BPh4] afforded the anion exchange product [(2)2Fe][BPh4]2, which was characterized by 1H NMR and absorption spectroscopy, combustion analysis, and single crystal X-ray diffraction. Various attempts to grow crystals of [(1)2Fe][FeX4] and [(2)2Fe][FeX4] culminated in the isolation of single crystals of [(2)2Fe][Cl6Fe2O] that was characterized by X-ray diffraction. Attempted synthesis of well-defined, mononuclear alkoxide derivatives from [(1)2Fe]2+ or [(2)2Fe]2+ gave mostly intractable products, but in one case we obtained the crystallographically characterized sodium iron cluster Na4Fe2(OC6H4F)8(THF)2. An aryloxide derivative proved accessible by reaction of NaOC6H4F with the mono-ligand precursor LFeCl2 (L = N,N′-dimesityl-diiminopyridine), but characterization of LFe(OC6H4F)2 was limited to a single crystal X-ray diffraction analysis, owing to unsuccessful attempts at isolating pure samples. The difficulties encountered in the isolation of pure alkoxide derivatives prompted us to use in-situ generated LFe(OEt)2 for studying the polymerization of rac-lactide. This system was found to be moderately active at room temperature and with a slight preference for the formation of a heterotactic polymer (Pr = 0.54–0.65). Large polydispersities of 1.5–2.0 indicated the presence of transesterification side-reactions, which were confirmed by the presence of peaks with m/z = n 144 + M(EtOH) + M(Na+) and m/z = (n + 0.5) 144 + M(EtOH) + M(Na+) in MALDI-MS.


1996 ◽  
Vol 11 (5) ◽  
pp. 1187-1198 ◽  
Author(s):  
S. Venzke ◽  
R. B. van Dover ◽  
Julia M. Phillips ◽  
E. M. Gyorgy ◽  
T. Siegrist ◽  
...  

Thin films of NiFe2O4 were deposited on SrTiO3 (001) and Y0.15Zr0.85O2 (yttria-stabilized zirconia) (001) and (011) substrates by 90°-off-axis sputtering. Ion channeling, x-ray diffraction, and transmission electron microscopy studies reveal that films grown at 600 °C consist of ∼300 Å diameter grains separated by thin regions of highly defective or amorphous material. The development of this microstructure is attributed to the presence of rotated or displaced crystallographic domains and is comparable to that observed in other materials grown on mismatched substrates (e.g., GaAs/Si or Ba2YCu3O7/MgO). Postdeposition annealing at 1000 °C yields films that are essentially single crystal. The magnetic properties of the films are strongly affected by the structural changes; unannealed films are not magnetically saturated even in an applied field of 55 kOe, while the annealed films have properties comparable to those of bulk, single crystal NiFe2O4. Homoepitaxial films grown at 400 °C also are essentially single crystal.


1999 ◽  
Vol 595 ◽  
Author(s):  
A.K. Sharma ◽  
C. Jin ◽  
A. Kvit ◽  
J. Narayan ◽  
J.F. Muth ◽  
...  

AbstractWe have synthesized single-crystal epitaxial MgZnO films by pulsed-laser deposition. High-resolution transmission electron microscopy, X-ray diffraction and Rutherford backscattering spectroscopy/ion channeling were used to characterize the microstructure, defect content, composition and epitaxial single-crystal quality of the films. In these films with up to ∼ 34 atomic percent Mg incorporation, an intense ultraviolet band edge photoluminescence at room temperature and 77 K was observed. The highly efficient photoluminescence is indicative of the excitonic nature of the material. Transmission spectroscopy revealed that the excitonic structure of the alloys was clearly visible at room temperature. Post-deposition annealing in oxygen reduced the number of defects and improved the optical properties of the films. The potential applications of MgZnO alloys in a variety of optoelectronic devices are discussed.


2000 ◽  
Vol 611 ◽  
Author(s):  
G. Lucadamo ◽  
C. Lavoie ◽  
C. Cabral ◽  
R. A. Carruthers ◽  
J.M.E. Harper

ABSTRACTThe biaxial stress in Co thin-films has been investigated in situ by measuring changes in substrate curvature that occurred during deposition and annealing.Films of Co, 35 to 500 nm in thickness, were deposited by UHV magnetron sputtering at room temperature on Si (100) and poly-Si substrates.Results show that during Co deposition the bending force increased linearly with film thickness; a signature of constant stress.In addition, the stress evolution during silicide formation was measured under constant heating rate conditions from room temperature up to 700°C. The stress-temperature curve was correlated with Co2Si, CoSi, and CoSi2 phase formation using in situ synchrotron X-ray diffraction measurements.The room temperature stress for the CoSi2 phase was found to be ∼0.8 GPa (tensile) in the films deposited on Si (100) and ∼1 GPa (tensile) on the films deposited on poly-Si.The higher tensile stress in the poly-Si sample could be a result of Si grain growth during annealing.


Author(s):  
Maurizio De Santis ◽  
Aude Bailly ◽  
Ian Coates ◽  
Stéphane Grenier ◽  
Olivier Heckmann ◽  
...  

Cobalt ferrite ultrathin films with the inverse spinel structure are among the best candidates for spin filtering at room temperature. High-quality epitaxial CoFe2O4 films about 4 nm thick have been fabricated on Ag(001) following a three-step method: an ultrathin metallic CoFe2 alloy was first grown in coherent epitaxy on the substrate and then treated twice with O2, first at room temperature and then during annealing. The epitaxial orientation and the surface, interface and film structure were resolved using a combination of low-energy electron diffraction, scanning tunnelling microscopy, Auger electron spectroscopy and in situ grazing-incidence X-ray diffraction. A slight tetragonal distortion was observed, which should drive the easy magnetization axis in-plane due to the large magneto-elastic coupling of such a material. The so-called inversion parameter, i.e. the Co fraction occupying octahedral sites in the ferrite spinel structure, is a key element for its spin-dependent electronic gap. It was obtained through in situ resonant X-ray diffraction measurements collected at both the Co and Fe K edges. The data analysis was performed using FDMNES, an ab initio program already extensively used to simulate X-ray absorption spectroscopy, and shows that the Co ions are predominantly located on octahedral sites with an inversion parameter of 0.88 (5). Ex situ X-ray photoelectron spectroscopy gives an estimation in accordance with the values obtained through diffraction analysis.


1984 ◽  
Vol 37 ◽  
Author(s):  
J. Kwo ◽  
D. B. McWhan ◽  
M. Hong ◽  
E. M. Gyorgy ◽  
L. C. Feldman ◽  
...  

AbstractBy means of metal MBE technique with in-situ RHEED characterization, high-quality single crystal rare earth metal films of yttrium and gadolinium were grown as a necessary requirement for studying Gd/Y superlattices. The key step of this successful growth is the employment of the single-crystal Nb film as a buffer layer to eliminate the interaction of rare earth metals with most substrates. Structural analyses by X-ray diffraction and ion channeling show that these crystals exhibit not only complete texture of [00.1], but also narrow rocking curves both perpendicular (00.2) and parallel (10.0) to the film.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2010 ◽  
Vol 89-91 ◽  
pp. 503-508 ◽  
Author(s):  
J. Sheng ◽  
U. Welzel ◽  
Eric J. Mittemeijer

The stress evolution during diffusion annealing of Ni-Cu bilayers (individual layer thicknesses of 50 nm) was investigated employing ex-situ and in-situ X-ray diffraction measurements. Annealing at relatively low homologous temperatures (about 0.3 - 0.4 Tm) for durations up to about 100 hours results in considerable diffusional intermixing, as demonstrated by Auger-electron spectroscopy investigations (in combination with sputter-depth profiling). In addition to thermal stresses due to differences of the coefficients of thermal expansion of layers and substrate, tensile stress con-tributions in the sublayers arise during the diffusion anneals. The obtained stress data have been discussed in terms of possible mechanisms of stress generation. The influence of diffusion on stress development in the sublayers of the diffusion couple during heating and isothermal annealing was investigated by comparing stress changes in the bilayer system with corresponding results obtained under identical conditions for single layers of the components in the bilayer system. The specific residual stresses that emerge due to diffusion between the (sub)layers in the bilayer could thereby be identified.


Sign in / Sign up

Export Citation Format

Share Document