Mechanical properties of iron matrix composites reinforced by copper-coated hybrid ceramic particles

2015 ◽  
Vol 30 (15) ◽  
pp. 2360-2368 ◽  
Author(s):  
Xinjian Cao ◽  
Jianfeng Jin ◽  
Yuebo Zhang ◽  
Bernie Yaping Zong

Abstract

2012 ◽  
Vol 182-183 ◽  
pp. 328-331
Author(s):  
Yu Fang Yang ◽  
Kang Ju Li

The effect of particle size of iron and size of reinforce particle on properties of materials was studied systematically by the specimen current direct heating dynamic hot press sintering. It is found that mechanical properties of composites increase with the increasing particle size of iron. The properties of SiCp/Fe composites firstly increase and decrease with particle size of SiC and properties are better when size is 15μm.


2016 ◽  
Vol 852 ◽  
pp. 461-466 ◽  
Author(s):  
Xin Wang ◽  
Li Sheng Zhong ◽  
Na Na Zhao ◽  
Vladimir E. Ovcharenko ◽  
Yun Hua Xu

Ceramic particles (such as VC, NbC, TiC, and WC), which exhibit high hardness and thermal stability, can be used for in situ fabrication of carbide-reinforced iron matrix composites with high macro-hardness and toughness. In this study, we describe a novel in situ process comprising infiltration casting and heat treatment to form carbide-reinforced iron matrix composites with hard ceramic particles. Our proposed approach was used to integrate different alloy wires, which can easily form carbides, into the metal matrix and cast a known amount of carbon, such as gray cast iron, ductile cast iron, or ordinary white cast iron, to form alloy-reinforced iron matrix composites. Thermal treatment of the resulting composites allowed the alloy elements of the wire to react with carbon in the matrix to form evenly distributed carbide particles. This approach can be applied to a wide range of materials with different morphologies for fabricating composites, machining tools, and wear-resistant components.


Sign in / Sign up

Export Citation Format

Share Document