Role of hierarchical morphology of helical carbon nanotube bundles on thermal expansion of polymer nanocomposites

2017 ◽  
Vol 32 (14) ◽  
pp. 2738-2746 ◽  
Author(s):  
Oleksandr G. Kravchenko ◽  
Xin Qian ◽  
Sergii G. Kravchenko ◽  
Rocio Misiego ◽  
R. Byron Pipes ◽  
...  

Abstract

Author(s):  
L. Kh. Galiakhmetova ◽  
Elena Korznikova ◽  
A. A. Kudreyko ◽  
S. V. Dmitriev

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeewan Chandra ◽  
Pooja Kapri Bhatt ◽  
Kuldeep Kholiya

Compression behavior of carbon nanotube bundles and individual carbon nanotubes within the bundle has been studied by using the Suzuki, Shanker, and usual Tait formulations. It is found that the Suzuki formulation is not capable of explaining the compression behavior of nanomaterials. Shanker formulation slightly improves the results obtained by the Suzuki formulation, but only usual Tait’s equation (UTE) of state gives results in agreement to the experimental data. The present study reveals that the product of bulk modules and the coefficient of volume thermal expansion remain constant for carbon nanotubes. It has also been found that the individual carbon nanotubes are less compressible than bundles of carbon nanotubes.


2012 ◽  
Vol 27 (21) ◽  
pp. 2812-2818 ◽  
Author(s):  
Nanying Ning ◽  
Wei Zhang ◽  
Jiajie Yan ◽  
Fan Xu ◽  
Changyu Tang ◽  
...  

Abstract


2005 ◽  
Vol 11 (8-9) ◽  
pp. 567-586 ◽  
Author(s):  
C. Velasco-Santos ◽  
A. L. Martinez-Hernandez ◽  
V. M. Castano

2016 ◽  
Vol 25 (6) ◽  
pp. 524-532 ◽  
Author(s):  
Oleksandr G. Kravchenko ◽  
Rocio Misiego ◽  
Sergii G. Kravchenko ◽  
R. Byron Pipes ◽  
Ica Manas-Zloczower

2009 ◽  
Vol 35 (12) ◽  
pp. 939-943 ◽  
Author(s):  
A. V. Dolbin ◽  
V. B. Esel’son ◽  
V. G. Gavrilko ◽  
V. G. Manzhelii ◽  
S. N. Popov ◽  
...  

Author(s):  
Luiza В. Atlukhanova ◽  
Igor V. Dolbin ◽  
Georgii V. Kozlov

Целью настоящей работы является раздельное определение модуля упругос-ти компонент нанокомпозитов полидициклопентандиен/многослойные углеродные на-нотрубки, а именно, нанонаполнителя и межфазных областей. Для достижения этой целииспользована микромеханическая модель.Выполненные оценки продемонстрировали, что модуль упругости углеродных нанотрубокв полимерной матрице нанокомпозита, т. е., их агрегатов, приблизительно на два поряд-ка меньше номинальной величины этого параметра для отдельной углеродной нанотруб-ки, тогда как модуль упругости межфазных областей примерно в два раза выше модуляупругости матричного полимера. Эти данные ясно демонстрируют некорректность при-менения номинальных характеристик нанонаполнителя, в частности, его модуля упру-гости, для определения соответствующих показателей нанокомпозита. Однако использо-вание реальных величин модуля упругости агрегатов углеродных нанотрубок в рамкахпростого правила смесей позволяет достаточно точное описание этого параметра в случаенанокомпозитов. Важно отметить, что модуль упругости углеродных нанотрубок в элас-томерной матрице существенно меньше этого параметра в стеклообразной матрице дляодного и того же нанокомпозита. Это означает, что указанный параметр определяется нетолько размерами и структурой агрегатов нанонаполнителя, но также и другими факто-рами, в частности, жесткостью окружающей агрегат полимерной матрицы, эффективнос-тью переноса приложенного к образцу механического напряжения от полимерной мат-рицы к нанонаполнителю и т. п.Применение модифицированного правила смесей для описания модуля упругости нано-композитов показало, что включенный в него, так называемый, фактор эффективностидлины в случае анизотропного нанонаполнителя существенно меньше (на несколькопорядков) рассчитанного теоретически для углеродных нанотрубок, что особенно очевид-но выражено в случае нанокомпозитов с эластомерной матрицей.В качестве вывода укажем, что модуль упругости компонент нанокомпозита являетсясильной функцией их фазового состояния, а определение реальных характеристик этихкомпонент позволяет корректное применение простого правила смесей.       ЛИТЕРАТУРА1. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes // Macromolecules,2006, v. 39(16), p. 5194. DOI: https://doi.org/10.1021/ma060733p2. Schaefer D. W., Justice R. S. How nano are nanocomposites? // Macromolecules, 2007, v. 40(24), p. 8501.DOI: https://doi.org10.1021/ma070326w3. Coleman J. N., Cadek M., Ryan K. P., Fonseca A., Nady J. B., Blau W. J., Ferreira M. S. Reinforcement ofpolymers with carbon nanotubes. The role of an ordered polymer intwrfacial region. Experimental andmodeling // Polymer, 2006, v. 47(23), pp. 8556–8561. DOI: https://doi.org/10/1016/j.polymer.2006.10.0144. Kozlov G. V., Yanovskii Yu. G., Zaikov G. E. Particulate-Filled Polymer Nanocomposites. Structure,Properties, Perspectives. New York, Nova Science Publishers, Inc., 2014. DOI: https://doi.org/10.1002/9783527644346.ch35. Mikitaev A. K., Kozlov G. V., Zaikov G. E. Polymer Nanocomposites: Variety of Structural Forms and Applications.New York, Nova Science Publishers, Inc., 2008.6. Jeong W., Kessler M.R. Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadienecomposites. Chem. Mater., 2008. v. 20(22), р. 7060. DOI: https://doi.org/10.1021/cm80209477. Koerner H., Liu W., Alexander M., Mirau P., Dowty H., Vaia R. A. Deformation – morphology correlationsin electrically conductive carbon nanotube – thermoplastic polyurethane nanocomposites // Polymer, 2005, v. 46(12), р. 4405. DOI: https://doi.org/10.1016/j.polymer.2005.02.0258. Ahmed S., Jones F. R. A review of particulate reinforcement theories of polymer composites // J.Mater. Sci., 1990, v. 25(12), pp. 4933–4942. DOI: https://doi.org/10.1007/bf005801109. Aygubova A. Ch., Kozlov G. V., Magomedov G. M., Zaikov G. E. The elastic modulus of carbon nanotubeaggregates in polymer nanocomposites. J. Characterization and Development of Novel Mater., 2016, v. 8(3), p. 227.10. Khan U., May P., O’Neill A., Bell A.P., Boussac E., Martin A., Semple J., Coleman J. N. Polymer reinforcementusing liquid-exfoliated boron nitride nanosheets // Nanoscale, 2013, v. 5(3), pp. 581-587. DOI: https://doi.org/10.1039/c2nr33049k


2010 ◽  
Vol 36 (5) ◽  
pp. 365-369 ◽  
Author(s):  
A. V. Dolbin ◽  
V. B. Esel’son ◽  
V. G. Gavrilko ◽  
V. G. Manzhelii ◽  
S. N. Popov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document