scholarly journals Analysis of Equation of State for Carbon Nanotubes

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeewan Chandra ◽  
Pooja Kapri Bhatt ◽  
Kuldeep Kholiya

Compression behavior of carbon nanotube bundles and individual carbon nanotubes within the bundle has been studied by using the Suzuki, Shanker, and usual Tait formulations. It is found that the Suzuki formulation is not capable of explaining the compression behavior of nanomaterials. Shanker formulation slightly improves the results obtained by the Suzuki formulation, but only usual Tait’s equation (UTE) of state gives results in agreement to the experimental data. The present study reveals that the product of bulk modules and the coefficient of volume thermal expansion remain constant for carbon nanotubes. It has also been found that the individual carbon nanotubes are less compressible than bundles of carbon nanotubes.

Author(s):  
L. Kh. Galiakhmetova ◽  
Elena Korznikova ◽  
A. A. Kudreyko ◽  
S. V. Dmitriev

2014 ◽  
Vol 5 ◽  
pp. 1575-1579 ◽  
Author(s):  
Christoph Nick ◽  
Sandeep Yadav ◽  
Ravi Joshi ◽  
Christiane Thielemann ◽  
Jörg J Schneider

The growth of cortical neurons on three dimensional structures of spatially defined (structured) randomly oriented, as well as on vertically aligned, carbon nanotubes (CNT) is studied. Cortical neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures. These neuron cells attach preferentially on the CNT sidewalls of the vertically aligned CNT architecture instead than onto the tips of the individual CNT pillars.


2013 ◽  
Vol 80 (4) ◽  
Author(s):  
Yuan Cheng ◽  
Nicola Maria Pugno ◽  
Xinghua Shi ◽  
Bin Chen ◽  
Huajian Gao

Molecular dynamics simulations are performed to investigate the effect of surface energy on equilibrium configurations and self-collapse of carbon nanotube bundles. It is shown that large and reversible volumetric deformation of such bundles can be achieved by tuning the surface energy of the system through an applied electric field. The dependence of the bundle volume on surface energy, bundle radius, and nanotube radius is discussed via a dimensional analysis and determined quantitatively using the simulation results. The study demonstrates potential of carbon nanotubes for applications in nanodevices where large, reversible, and controllable volumetric deformations are desired.


2000 ◽  
Vol 72 (1-2) ◽  
pp. 21-33 ◽  
Author(s):  
C. N. R. Rao ◽  
G. U. Kulkarni ◽  
A. Govindaraj ◽  
B. C. Satishkumar ◽  
P. John Thomas

The size-dependent metal to nonmetal transition in metal nanoparticles has been investigated using photoelectron and tunneling spectroscopic techniques. Metal nanoparticles capped by thiols are shown to organize into ordered 2D and 3D structures. Single-walled nanotubes and aligned carbon nanotube bundles have been synthesized by controlling the size of metal nanoparticles produced in situ during the pyrolysis of precursors. Nanowires of gold and other metals have been produced in the capillaries of the single-walled nanotubes.


RSC Advances ◽  
2015 ◽  
Vol 5 (33) ◽  
pp. 26157-26162 ◽  
Author(s):  
Prarthana Gowda ◽  
Soumalya Mukherjee ◽  
Siva K. Reddy ◽  
Rituparna Ghosh ◽  
Abha Misra

The transformation of electrostrictive to piezoelectric behavior is observed in carbon nanotube under coupled electro-magnetic field. Five times higher actuation response was observed under coupled field as compared to the individual fields.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 128 ◽  
Author(s):  
Daniel Iglesias ◽  
Michele Melchionna

The unique morphological characteristics of carbon nanotubes (CNTs) present the intriguing opportunity of exploiting the inner cavity for carrying out chemical reactions. Such reactions are catalysed either by the individual tubes that function both as catalysts and nanoreactors or by additional catalytic species that are confined within the channel. Such confinement creates what is called “confinement effect”, which can result in different catalytic features affecting activity, stability and selectivity. The review highlights the recent major advancements of catalysis conducted within the CNTs, starting from the synthesis of the catalytic composite, and discussing the most notable catalytic processes that have been reported in the last decade.


Sign in / Sign up

Export Citation Format

Share Document