Nanometer-Scale Laser Direct-Write Using Near-Field Optics

MRS Bulletin ◽  
2007 ◽  
Vol 32 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Costas P. Grigoropoulos ◽  
David J. Hwang ◽  
Anant Chimmalgi

AbstractThis article summarizes research on laser-based processing and structuring of materials at the nanoscale using optical near-field schemes. Both apertureless and tapered fiber near-field scanning optical microscope probes can deliver highly confined irradiation at sufficiently high intensities to cause morphological and structural changes in materials at the nanometer level. The energy emitted by the probes and the absorption within the target material are predicted by carrying out calculations of the near-field electromagnetic distribution. The effects of shrinking laser beam dimensions compete with the energy diffusion into the target material. Experimental results have shown well-controlled subtractive material modification with minimum feature size in the neighborhood of 10 nm. Precise patterning can be achieved via laser-assisted chemical etching. Control of the nucleation of nanostructures via rapid melting and crystallization is demonstrated. The article concludes with an outlook to applications.

1997 ◽  
Vol 474 ◽  
Author(s):  
E. B. McDaniel ◽  
J. W. P. Hsu

ABSTRACTWe incorporate a polarization modulation technique in a near-field scanning optical microscope (NSOM) for quantitative polarimetry studies at the nanometer scale. Using this technique, we map out stress-induced birefringence associated with submicron defects at the fusion boundaries of SiTiO3 bicrystals. The strain fields surrounding these defects are larger than the defect sizes and show complex spiral shapes that break the reflection symmetry of the bicrystal boundary.


1998 ◽  
Vol 37 (1) ◽  
pp. 84 ◽  
Author(s):  
E. B. McDaniel ◽  
S. C. McClain ◽  
J. W. P. Hsu

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 623-627 ◽  
Author(s):  
M. HARIDAS ◽  
L. N. TRIPATHI ◽  
J. K. BASU

Effect of shape and density on the energy transfer between metallic nanoparticles and semi conducting nanostructures was studied by observing the photoluminescence spectra using near field scanning optical microscope. The monolayers of gold nanoparticles, CdSe nanorods and composite with different number ratios were prepared using Langmuir Blodgett method. The spectra collected from the films with different number ratios of CdSe and gold shows a systematic variation of peak position and intensity as a function of number density of CdSe . The photoluminescence spectra collected from composite monolayer is blue shifted compared to the spectra from CdSe nanorods monolayer. Further we observed a blue shift in peak position and reduction emission intensity with respect to increase in the fraction of gold nanoparticles and surface density. We have provided explanation for the observed behavior in terms of strong exciton–plasmon interactions in the compact hybrid monolayers.


Sign in / Sign up

Export Citation Format

Share Document