Behavior of Two Titanium Alloys in Simulated Body Fluid

2011 ◽  
Vol 1355 ◽  
Author(s):  
Julia C. Mirza Rosca ◽  
Eladio D. Herrera Santana ◽  
S. Drob ◽  
Agurtzane Martinez Ortigosa

ABSTRACTTitanium possesses an excellent corrosion resistance in biological environments because the titanium dioxide formed on its surface is extremely stable. When aluminium and vanadium are added to titanium in small quantities, the alloy achieves considerably higher tensile properties than of pure titanium and this alloy is used in high stress-bearing situations. But these metals may also influence the chemostatic mechanisms that are involved in the attraction of biocells. V presence can be associated with potential cytotoxic effects and adverse tissue reactions. The alloys with aluminium and iron or with aluminium and niobium occur to be more suitable for implant applications: it possesses similar corrosion resistance and mechanical properties to those of titanium-aluminium-vanadium alloy; moreover, these alloys have no toxicity.In this paper, pure Ti, Ti-6Al-7Nb and Ti-6Al-4Fe with a nanostructured surface were studied. Data about mechanical behavior are presented. The mechanical behavior was determined using optical metallography, tensile strength and Vickers microhardness.For the electrochemical measurements a conventional three-electrode cell with a Pt grid as counter electrode and saturated calomel (SCE) as reference electrode was used. AC impedance data were obtained at open circuit potential using a PAR 263A potentiostat connected with a PAR 5210 lock-in amplifier. The ESEM and EDAX observation were carried out with an environmental scanning electronic microscope Fei XL30 ESEM with LaB6-cathode attached with an energy-dispersive electron probe X-ray analyzer (EDAX Sapphire). After 3 days of immersion in simulated body fluid the nucleation of the bone growth was observed on the implant surface.It resulted that the tested oxide films presented passivation tendency and a very good stability and no form of local corrosion was detected. The mechanical data confirm the presence of an outer porous passive layer and an inner compact and protective passive layer. EIS confirms the mechanical results. The thicknesses of these layers were measured. SEM photographs of the surface and EDX profiles for the samples illustrate the appearance of a microporous layer made up of an alkaline titanate hydrogel. The apatite-forming ability of the metal is attributed to the amorphous sodium titanate that is formed on the metal during the surface treatment.The results emphasized that the surface treatment increases the passive layer adhesion to the metal surface and improves the biocompatibility of the biomedical devices inducing the bone growth on the implant surface.

2012 ◽  
Vol 727-728 ◽  
pp. 1238-1242 ◽  
Author(s):  
Roger Borges ◽  
Antônio Carlos da Silva ◽  
Juliana Marchi

Among bioceramics materials, bioglasses which exhibits either a bioactive or resorbable behavior has been studied for many applications, such as bone substitutive and regeneration. When in contact with body fluid, the bioglasses can induce the formation of a hydroxyapatite surface layer. In this paper, we studied the bioactivity of a bioglass containing 48 wt %SiO2, 27 wt% Na2O, 19 wt % CaO and 6 wt %P2O5. After fusion and annealing, the samples were immersed in SBF for different periods, up to 14 days. The samples were characterized through XRD, DRIFT and SEM before and after bioactivity experiments. The overall results suggest the formation of a surface layer of consisting of hydroxyapatite, which was crystallized within seven days after in vitro experiments, leading to a suitable bioactivity. Moreover, the samples showed a glass network with high cohesion due to calcium addition, leading to materials with high corrosion resistance.


2015 ◽  
Vol 227 ◽  
pp. 443-446 ◽  
Author(s):  
Patrycja Osak ◽  
Tomasz Goryczka ◽  
Bożena Łosiewicz

The pitting potential,Epit, of the passive layer on the implant alloy can be treated as an accelerated laboratory test to assessment a susceptibility to pitting corrosion of metallic biomaterials in simulated body fluids. This study deals with an evaluation ofEpitof the self-passivated TiO2layer formed on the surface of the NiTi implant alloy as a function of the scan rate of polarization. Cyclic potentiodynamic studies were performed in Ringer’s solution at 37°C. It was found out that the more noble value ofEpitin the range of 0.99-2 V was registered at a given polarization scan rate that ranged from 0.16 to 2 mV s-1, the lower susceptibility of the self-passivated NiTi implant alloy to the initiation of pits was detected.


2011 ◽  
Vol 471-472 ◽  
pp. 325-330 ◽  
Author(s):  
K. Venkateswarlu ◽  
N. Rameshbabu ◽  
Arumugam Chandra Bose ◽  
V. Muthupandi ◽  
S. Subramanian

Nanostructured titania/hydroxyapatite (HA) composite layer was developed on commercially pure titanium (Cp Ti) implant material by plasma electrolytic processing (PEP) technique in order to improve its bioactivity and corrosion resistance under physiological conditions. The phases present in the developed composite layer were studied by X-ray diffraction (XRD) technique. The surface morphology and thickness of the composite layers were observed by scanning electron microscopy (SEM). The corrosion characteristics of the developed layer were studied by potentiodynamic polarization scan under simulated body fluid (7.4 pH Hanks solution) and simulated osteoclast (4.5 pH) conditions. The in-vitro bioactivity of the composite layers was studied by using Kokubu’s simulated body fluid (SBF) solution. The X-ray diffractograms reveal the presence of anatase TiO2 and HA phases in the developed layer. The SEM results confirm the pore-free morphology of the implant material surface and the thickness of the developed composite layer was observed to be 110 ± 5 µm for 12 min of PEP. The potentiodynamic polarization study shows an improved corrosion resistance and the in-vitro bioactivity test results indicate enhanced apatite forming ability of PEP treated Cp Ti surfaces compared to that of the untreated Cp Ti, under simulated body fluid conditions.


2020 ◽  
Vol 71 (6) ◽  
pp. 96-110
Author(s):  
Omyma Ramadan Mohammed Khalifa ◽  
Abdel-Wahab Abd Elhamid Ali ◽  
Aisha Kassab ◽  
Amal Hemida Tilp ◽  
Marwa Mohamed Mohamed Mohamed Esmail

In recent years, smart implants take the most attention in the field of bone manufacturing. Our study seeks to develop the biodegradability of Mg alloys to use orthopedic implants for the biomedical applications to avoid post removal of the implant. Mg and Zn are very important to human body and have no toxicity. Mg - 6% wt Zn biodegradability is studied in simulated body fluid for two and four weeks. Four electro-deposition bathes are used to deposit a coat on the substrate to improve the corrosion resistance of this alloy in the media of simulated body fluid. The following analyses were studied to emphasize the research aim. Scanning electron microscope (SEM), Energy dispersive X-Ray (EDX) analysis shows the surface morphology and the elements of the coat phases components. The results also confirmed by X-Ray diffraction Pattern (XRD) that show the phases that confirmed the formation of hydroxyapatite HA phase, Fourier-Transform Infrared Spectroscopy (FTIR) to investigate the functional groups of the phases coats that confirm the formation of hydroxyapatite and the electrochemical measurements that investigate the improvement of corrosion resistance. The results indicated that the fourth bath gives the best coat and four weeks immersion gives more corrosion resistance than two weeks.


Sign in / Sign up

Export Citation Format

Share Document