Bioinspired Artificial Protein Materials: Self-Assembly and Order from Nano to Macroscale

2011 ◽  
Vol 1301 ◽  
Author(s):  
Min Dai ◽  
Jennifer S. Haghpanah ◽  
Carlo Yuvienco ◽  
Jin Kim Montclare

ABSTRACTWe describe the biosynthesis and characterization of protein materials comprised of two distinct self-assembling domains (SADs): elastin (E) found in tissue for its elastic properties and cartilage oligomeric matrix protein coiled-coil (COMPcc, C) predominantly locatedin joint and in bones. Based on earlier studies on protein block polymers comprised these two SADs, orientation and number of blocks play a crucial role in the overall stimuli-responsive supramolecular assembly behavior. Here we fabricate a range of EnC and CEn block polymers in which the E domain is systematically truncated to explore the effects of the E domain on the overall physicochemical behavior.

Inorganics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 91 ◽  
Author(s):  
Marta Gozzi ◽  
Benedikt Schwarze ◽  
Peter Coburger ◽  
Evamarie Hey-Hawkins

3,1,2-Ruthenadicarbadodecaborane complexes bearing the [C2B9H11]2− (dicarbollide) ligand are robust scaffolds, with exceptional thermal and chemical stability. Our previous work has shown that these complexes possess promising anti-tumor activities in vitro, and tend to form aggregates (or self-assemblies) in aqueous solutions. Here, we report on the synthesis and characterization of four ruthenium(II) complexes of the type [3-(η6-arene)-1,2-R2-3,1,2-RuC2B9H9], bearing either non-polar (R = Me (2–4)) or polar (R = CO2Me (7)) substituents at the cluster carbon atoms. The behavior in aqueous solution of complexes 2, 7 and the parent unsubstituted [3-(η6-p-cymene)-3,1,2-RuC2B9H11] (8) was investigated via UV-Vis spectroscopy, mass spectrometry and nanoparticle tracking analysis (NTA). All complexes showed spontaneous formation of self-assemblies (108–109 particles mL−1), at low micromolar concentration, with high polydispersity. For perspective applications in medicine, there is thus a strong need for further characterization of the spontaneous self-assembly behavior in aqueous solutions for the class of neutral metallacarboranes, with the ultimate scope of finding the optimal conditions for exploiting this self-assembling behavior for improved biological performance.


2019 ◽  
Vol 4 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Ryan T. Shafranek ◽  
Joel D. Leger ◽  
Song Zhang ◽  
Munira Khalil ◽  
Xiaodan Gu ◽  
...  

Directed self-assembly in polymeric hydrogels allows tunability of thermal response and viscoelastic properties.


Soft Matter ◽  
2021 ◽  
Author(s):  
Michael Meleties ◽  
Priya Katyal ◽  
Bonnie Lin ◽  
Dustin Britton ◽  
Jin Kim Montclare

Owing to their tunable properties, hydrogels comprised of stimuli sensitive polymers are one of the most appealing scaffolds with applications in tissue engineering, drug delivery and other biomedical fields. We...


2018 ◽  
Vol 16 (19) ◽  
pp. 3584-3595 ◽  
Author(s):  
Shin-ichiro Kato ◽  
Satoshi Jin ◽  
Terutaka Kimura ◽  
Naoki Yoshikawa ◽  
Daiki Nara ◽  
...  

We synthesized the first members of trithiazolyl-1,3,5-triazines that combine attractive photophysical and self-assembling properties.


2020 ◽  
Vol 16 ◽  
pp. 2017-2025
Author(s):  
Goutam Ghosh ◽  
Gustavo Fernández

Peptide-based biopolymers represent highly promising biocompatible materials with multiple applications, such as tailored drug delivery, tissue engineering and regeneration, and as stimuli-responsive materials. Herein, we report the pH- and concentration-dependent self-assembly and conformational transformation of the newly synthesized octapeptide PEP-1. At pH 7.4, PEP-1 forms β-sheet-rich secondary structures into fractal-like morphologies, as verified by circular dichroism (CD), Fourier-transform infrared (FTIR) spectroscopy, thioflavin T (ThT) fluorescence spectroscopy assay, and atomic force microscopy (AFM). Upon changing the pH value (using pH 5.5 and 13.0), PEP-1 forms different types of secondary structures and resulting morphologies due to electrostatic repulsion between charged amino acids. PEP-1 can also form helical or random-coil secondary structures at a relatively low concentration. The obtained pH-sensitive self-assembly behavior of the target octapeptide is expected to contribute to the development of novel drug nanocarrier assemblies.


Soft Matter ◽  
2020 ◽  
Vol 16 (34) ◽  
pp. 8047-8056
Author(s):  
Yuguo Chen ◽  
Xinghua Zhang ◽  
Ying Jiang

A self-consistent field theory based on the wormlike chain model is implemented in the investigation of the self-assembly behavior of bottlebrush block polymers in the formation of a lamellar phase.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Julia Y. Rho ◽  
Henry Cox ◽  
Edward D. H. Mansfield ◽  
Sean H. Ellacott ◽  
Raoul Peltier ◽  
...  

Abstract Self-assembling peptides have the ability to spontaneously aggregate into large ordered structures. The reversibility of the peptide hydrogen bonded supramolecular assembly make them tunable to a host of different applications, although it leaves them highly dynamic and prone to disassembly at the low concentration needed for biological applications. Here we demonstrate that a secondary hydrophobic interaction, near the peptide core, can stabilise the highly dynamic peptide bonds, without losing the vital solubility of the systems in aqueous conditions. This hierarchical self-assembly process can be used to stabilise a range of different β-sheet hydrogen bonded architectures.


2013 ◽  
Vol 14 (2) ◽  
pp. 2788-2807 ◽  
Author(s):  
John Young ◽  
Benjamin Clayton ◽  
Alexandra Kikonyogo ◽  
Truc-Chi Pham ◽  
Abby Parrill

Sign in / Sign up

Export Citation Format

Share Document