scholarly journals pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide

2020 ◽  
Vol 16 ◽  
pp. 2017-2025
Author(s):  
Goutam Ghosh ◽  
Gustavo Fernández

Peptide-based biopolymers represent highly promising biocompatible materials with multiple applications, such as tailored drug delivery, tissue engineering and regeneration, and as stimuli-responsive materials. Herein, we report the pH- and concentration-dependent self-assembly and conformational transformation of the newly synthesized octapeptide PEP-1. At pH 7.4, PEP-1 forms β-sheet-rich secondary structures into fractal-like morphologies, as verified by circular dichroism (CD), Fourier-transform infrared (FTIR) spectroscopy, thioflavin T (ThT) fluorescence spectroscopy assay, and atomic force microscopy (AFM). Upon changing the pH value (using pH 5.5 and 13.0), PEP-1 forms different types of secondary structures and resulting morphologies due to electrostatic repulsion between charged amino acids. PEP-1 can also form helical or random-coil secondary structures at a relatively low concentration. The obtained pH-sensitive self-assembly behavior of the target octapeptide is expected to contribute to the development of novel drug nanocarrier assemblies.

2019 ◽  
Vol 10 (41) ◽  
pp. 5602-5616 ◽  
Author(s):  
Felix Wendler ◽  
Jessica C. Tom ◽  
Felix H. Schacher

Photoacids experience a strong increase in acidity when absorbing light and, hence, can be considered as molecular switches. The incorporation into amphiphilic block copolymers leads to novel stimuli-responsive materials with great potential.


2016 ◽  
Vol 848 ◽  
pp. 527-531
Author(s):  
Lu Bin Lin ◽  
Qing Yun Yu ◽  
Zhuo Qun Gu ◽  
Xiao Ze Jiang ◽  
Mei Fang Zhu

A well-defined poly [(ethylene glycol)-block-2-(dimethylamino) ethyl methacrylate-block-2-(diethylamino) methacrylate] (PEG-b-DMA-b-DEA) triblock copolymer was synthesized via atom transfer radical polymerization (ATRP) by successively polymerization of DMA and DEA monomers using a PEG-based macroinitiator, and obtained copolymer was then converted to be PEG-b-P(DMA-co-QDMA)-b-PDEA copolymer with “clickable” moieties in the middle block by the quaternization with propargyl bromide. Those copolymers prepared were characterized by proton Nuclear Magnetic Resonance (1H NMR) and Gel Permeation Chromatography (GPC), and its self-assembly behavior and subsequently fixation with bis-(azidoethyl) disulfide via click chemistry resulting reduction-sensitive shell-cross-linked (SCL) micelle in purely aqueous solution were investigated by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The results show the micellar structure could be effectively cross-linked via click chemistry and also be dissociated at reduction condition, which may realize it's potential application as novel drug delivery carriers.


RSC Advances ◽  
2018 ◽  
Vol 8 (32) ◽  
pp. 17878-17878
Author(s):  
Yiting Xu ◽  
Jie Cao ◽  
Qi Li ◽  
Jilu Li ◽  
Kaiwei He ◽  
...  

Correction for ‘Novel azobenzene-based amphiphilic copolymers: synthesis, self-assembly behavior and multiple-stimuli-responsive properties’ by Yiting Xu et al., RSC Adv., 2018, 8, 16103–16113.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 310
Author(s):  
Hao Kong ◽  
Bin Liu ◽  
Guozheng Yang ◽  
Yun Chen ◽  
Gang Wei

Studying the interactions between biomolecules and material interfaces play a crucial role in the designing and synthesizing of functional bionanomaterials with tailored structure and function. Previously, a lot of studies were performed on the self-assembly of peptides in solution through internal and external stimulations, which mediated the creation of peptide nanostructures from zero-dimension to three-dimension. In this study, we demonstrate the self-assembly behavior of the GNNQQNY peptide on the surface of mica and highly oriented pyrolytic graphite through tailoring the self-assembly conditions. Various factors, such as the type of dissolvent, peptide concentration, pH value, and evaporation period on the formation of peptide nanofibers and nanoribbons with single- and bi-directional arrays are investigated. It is found that the creation of peptide nanoribbons on both mica and HOPG can be achieved effectively through adjusting and optimizing the experimental parameters. Based on the obtained results, the self-assembly and formation mechanisms of peptide nanoribbons on both material interfaces are discussed. It is expected that the findings obtained in this study will inspire the design of motif-specific peptides with high binding affinity towards materials and mediate the green synthesis of peptide-based bionanomaterials with unique function and application potential.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xuan Song ◽  
Zhiwei Wang ◽  
Shiyu Tao ◽  
Guixia Li ◽  
Jie Zhu

Self-assembly of extracted collagen from swine trotter tendon under different conditions was firstly observed using atomic force microscopy; then the effects of collagen concentration, pH value, and metal ions to the topography of the collagen assembly were analyzed with the height images and section analysis data. Collagen assembly under 0.1 M, 0.2 M, 0.3 M CaCl2, and MgCl2 solutions in different pH values showed significant differences (P < 0.05) in the topographical properties including height, width, and roughness. With the concentration being increased, the width of collagen decreased significantly (P < 0.05). The width of collagen fibers was first increased significantly (P < 0.05) and then decreased with the increasing of pH. The collagen was assembled with network structure on the mica in solution with Ca2+ ions. However, it had shown uniformed fibrous structure with Mg2+ ions on the new cleaved mica sheet. In addition, the width of collagen fibrous was 31~58 nm in solution with Mg2+ but 21~50 nm in Ca2+ solution. The self-assembly collagen displayed various potential abilities to construct fibers or membrane on mica surfaces with Ca2+ ions and Mg2+ irons. Besides, the result of collagen self-assembly had shown more relations among solution pH value, metal ions, and collagen molecular concentration, which will provide useful information on the control of collagen self-assembly in tissue engineering and food packaging engineering.


Langmuir ◽  
2004 ◽  
Vol 20 (20) ◽  
pp. 8569-8575 ◽  
Author(s):  
S. Dai ◽  
P. Ravi ◽  
C. H. Tan ◽  
K. C. Tam

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 54
Author(s):  
Rosa M. Ortuño

The rational design and engineer of organogel-based smart materials and stimuli-responsive materials with tuned properties requires the control of the non-covalent forces driving the hierarchical self-assembly. Chirality, as well as cis/trans relative configuration, also plays a crucial role promoting the morphology and characteristics of the aggregates. Cycloalkane derivatives can provide chiral chemical platforms allowing the incorporation of functional groups and hydrophobic structural units able for a convenient molecular stacking leading to gels. Restriction of the conformational freedom imposed by the ring strain is also a contributing issue that can be modulated by the inclusion of flexible segments. In addition, donor/acceptor moieties can also be incorporated favoring the interactions with light or with charged species. This review offers a perspective on the abilities and properties of carbocycle-based organogelators starting from simple cycloalkane derivatives, which were the key to establish the basis for an effective self-assembling, to sophisticated polycyclic compounds with manifold properties and applications.


2006 ◽  
Vol 78 (12) ◽  
pp. 2313-2323 ◽  
Author(s):  
David G. Whitten ◽  
Komandoor E. Achyuthan ◽  
Gabriel P. Lopez ◽  
Oh-Kil Kim

We recently found that certain cyanines form tight complexes with carboxymethylamylose (CMA) in aqueous solutions and that in these complexes the cyanine exists as a strongly fluorescent and stable J-aggregate. Cyanine dyes are characterized by their ability to form J-aggregates showing very narrow absorption and fluorescence spectra relative to the monomer. Although they have found uses in sensing applications, the practicability has been limited in many cases due to the low quantum efficiencies for J-aggregate fluorescence. The CMA-cyanine complex is formed by a cooperative self-assembly in which both components undergo conformational changes during the association. The CMA exists as a random coil in solution prior to complex formation; helix formation is prevented due to repulsion of the charges on the carboxymethylated glucose units. The cyanine exists as a nonfluorescent monomer in the same solutions. A helical atomic force microscopy image and large induced circular dichroism (CD) spectra of the cyanine J-aggregate indicate that the self-assembly is a superhelix scaffold of CMA decorated with J-aggregates of the cyanine. Similar behavior was also observed with carboxymethylated cellulose (CMC). Enzymatic disruption of the helical structures (e.g., by the use of amylase to disrupt the structure of CMA helix) leads to the disappearance of the J-aggregate-associated fluorescence. The photophysical behavior and applications of this complex for sensing are discussed.


Sign in / Sign up

Export Citation Format

Share Document